34 resultados para TATA box basal promoter element
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB)catalyzes the synthesis and degradation of fructose-2,6-bisphosphate, a key modulator of glycolysis-gluconeogenesis. To gain insight into the molecular mechanism behind hormonal and nutritional regulation of PFKFB expression, we have cloned and characterized the proximal promoter region of the liver isoform of PFKFB (PFKFB1) from gilthead sea bream (Sparus aurata). Transient transfection of HepG2 cells with deleted gene promoter constructs and electrophoretic mobility shift assays allowed us to identify a sterol regulatory element (SRE) to which SRE binding protein-1a (SREBP-1a)binds and transactivates PFKFB1 gene transcription. Mutating the SRE box abolished SREBP-1a binding and transactivation. The in vivo binding of SREBP-1a to the SRE box in the S. aurata PFKFB1 promoter was confirmed by chromatin immunoprecipitation assays. There is a great deal of evidence for a postprandial rise of PFKB1 mRNA levels in fish and rats. Consistently, starved-to-fed transition and treatment with glucose or insulin increased SREBP-1 immunodetectable levels, SREBP-1 association to PFKFB1 promoter, and PFKFB1 mRNA levels in the piscine liver. Our findings demonstrate involvement of SREBP-1a in the transcriptional activation of PFKFB1, and we conclude that SREBP-1a may exert a key role mediating postprandial activation of PFKFB1 transcription.
Resumo:
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB)catalyzes the synthesis and degradation of fructose-2,6-bisphosphate, a key modulator of glycolysis-gluconeogenesis. To gain insight into the molecular mechanism behind hormonal and nutritional regulation of PFKFB expression, we have cloned and characterized the proximal promoter region of the liver isoform of PFKFB (PFKFB1) from gilthead sea bream (Sparus aurata). Transient transfection of HepG2 cells with deleted gene promoter constructs and electrophoretic mobility shift assays allowed us to identify a sterol regulatory element (SRE) to which SRE binding protein-1a (SREBP-1a)binds and transactivates PFKFB1 gene transcription. Mutating the SRE box abolished SREBP-1a binding and transactivation. The in vivo binding of SREBP-1a to the SRE box in the S. aurata PFKFB1 promoter was confirmed by chromatin immunoprecipitation assays. There is a great deal of evidence for a postprandial rise of PFKB1 mRNA levels in fish and rats. Consistently, starved-to-fed transition and treatment with glucose or insulin increased SREBP-1 immunodetectable levels, SREBP-1 association to PFKFB1 promoter, and PFKFB1 mRNA levels in the piscine liver. Our findings demonstrate involvement of SREBP-1a in the transcriptional activation of PFKFB1, and we conclude that SREBP-1a may exert a key role mediating postprandial activation of PFKFB1 transcription.
Resumo:
AIMS: Mitofusin-2 (Mfn2) expression is dysregulated in vascular proliferative disorders and its overexpression attenuates the proliferation of vascular smooth muscle cells (VSMCs) and neointimal lesion development after balloon angioplasty. We sought to gain insight into the mechanisms that control Mfn2 expression in VSMCs. METHODS AND RESULTS: We cloned and characterized 2 kb of the 5'-flanking region of the human Mfn2 gene. Its TATA-less promoter contains a CpG island. In keeping with this, 5'-rapid amplification of cDNA ends revealed six transcriptional start sites (TSSs), of which TSS2 and TSS5 were the most frequently used. The strong CpG island was found to be non-methylated under conditions characterized by large differences in Mfn2 gene expression. The proximal Mfn2 promoter contains six putative Sp1 motifs. Sp1 binds to the Mfn2 promoter and its overexpression activates the Mfn2 promoter in VSMCs. Chemical inhibition of Sp1 reduced Mfn2 expression, and Sp1 silencing reduced transcriptional activity of the Mfn2 promoter. In keeping with this view, Sp1 and Mfn2 mRNA levels were down-regulated in the aorta early after an atherogenic diet in apolipoprotein E-knockout mice or in VSMCs cultured in the presence of low serum. CONCLUSION: Sp1 is a key factor in maintaining basal Mfn2 transcription in VSMCs. Given the anti-proliferative actions of Mfn2, Sp1-induced Mfn2 transcription may represent a mechanism for prevention of VSMC proliferation and neointimal lesion and development.
Resumo:
AIMS: Mitofusin-2 (Mfn2) expression is dysregulated in vascular proliferative disorders and its overexpression attenuates the proliferation of vascular smooth muscle cells (VSMCs) and neointimal lesion development after balloon angioplasty. We sought to gain insight into the mechanisms that control Mfn2 expression in VSMCs. METHODS AND RESULTS: We cloned and characterized 2 kb of the 5'-flanking region of the human Mfn2 gene. Its TATA-less promoter contains a CpG island. In keeping with this, 5'-rapid amplification of cDNA ends revealed six transcriptional start sites (TSSs), of which TSS2 and TSS5 were the most frequently used. The strong CpG island was found to be non-methylated under conditions characterized by large differences in Mfn2 gene expression. The proximal Mfn2 promoter contains six putative Sp1 motifs. Sp1 binds to the Mfn2 promoter and its overexpression activates the Mfn2 promoter in VSMCs. Chemical inhibition of Sp1 reduced Mfn2 expression, and Sp1 silencing reduced transcriptional activity of the Mfn2 promoter. In keeping with this view, Sp1 and Mfn2 mRNA levels were down-regulated in the aorta early after an atherogenic diet in apolipoprotein E-knockout mice or in VSMCs cultured in the presence of low serum. CONCLUSION: Sp1 is a key factor in maintaining basal Mfn2 transcription in VSMCs. Given the anti-proliferative actions of Mfn2, Sp1-induced Mfn2 transcription may represent a mechanism for prevention of VSMC proliferation and neointimal lesion and development.
Resumo:
In this paper we address the complexity of the analysis of water use in relation to the issue of sustainability. In fact, the flows of water in our planet represent a complex reality which can be studied using many different perceptions and narratives referring to different scales and dimensions of analysis. For this reason, a quantitative analysis of water use has to be based on analytical methods that are semantically open: they must be able to define what we mean with the term “water” when crossing different scales of analysis. We propose here a definition of water as a resource that deal with the many services it provides to humans and ecosystems. WE argue that water can fulfil so many of them since the element has many characteristics that allow for the resource to be labelled with different attributes, depending on the end use –such as drinkable. Since the services for humans and the functions for ecosystems associated with water flows are defined on different scales but still interconnected it is necessary to organize our assessment of water use across different hierarchical levels. In order to do so we define how to approach the study of water use in the Societal Metabolism, by proposing the Water Metabolism, tganized in three levels: societal level, ecosystem level and global level. The possible end uses we distinguish for the society are: personal/physiological use, household use, economic use. Organizing the study of “water use” across all these levels increases the usefulness of the quantitative analysis and the possibilities of finding relevant and comparable results. To achieve this result, we adapted a method developed to deal with multi-level, multi-scale analysis - the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach - to the analysis of water metabolism. In this paper, we discuss the peculiar analytical identity that “water” shows within multi-scale metabolic studies: water represents a flow-element when considering the metabolism of social systems (at a small scale, when describing the water metabolism inside the society) and a fund-element when considering the metabolism o ecosystems (at a larger scale when describing the water metabolism outside the society). The theoretical analysis is illustrated using two case which characterize the metabolic patterns regarding water use of a productive system in Catalonia and a water management policy in Andarax River Basin in Andalusia.
Resumo:
The ability to regulate specific genes of energy metabolism in response to fasting and feeding is an important adaptation allowing survival of intermittent food supplies. However, little is known about transcription factors involved in such responses in higher organisms. We show here that gene expression in adipose tissue for adipocyte determination differentiation dependent factor (ADD) 1/sterol regulatory element binding protein (SREBP) 1, a basic-helix-loop-helix protein that has a dual DNA-binding specificity, is reduced dramatically upon fasting and elevated upon refeeding; this parallels closely the regulation of two adipose cell genes that are crucial in energy homeostasis, fatty acid synthetase (FAS) and leptin. This elevation of ADD1/SREBP1, leptin, and FAS that is induced by feeding in vivo is mimicked by exposure of cultured adipocytes to insulin, the classic hormone of the fed state. We also show that the promoters for both leptin and FAS are transactivated by ADD1/SREBP1. A mutation in the basic domain of ADD1/SREBP1 that allows E-box binding but destroys sterol regulatory element-1 binding prevents leptin gene transactivation but has no effect on the increase in FAS promoter function. Molecular dissection of the FAS promoter shows that most if not all of this action of ADD1/SREBP1 is through an E-box motif at -64 to -59, contained with a sequence identified previously as the major insulin response element of this gene. These results indicate that ADD1/SREBP1 is a key transcription factor linking changes in nutritional status and insulin levels to the expression of certain genes that regulate systemic energy metabolism.
Resumo:
The recently discovered apolipoprotein AV (apoAV) gene has been reported to be a key player in modulating plasma triglyceride levels. Here we identify the hepatocyte nuclear factor-4 (HNF-4 ) as a novel regulator of human apoAV gene. Inhibition of HNF-4 expression by small interfering RNA resulted in down-regulation of apoAV. Deletion, mutagenesis, and binding assays revealed that HNF-4 directly regulates human apoAV promoter through DR1 [a direct repeat separated by one nucleotide (nt)], and via a novel element for HNF-4 consisting of an inverted repeat separated by 8 nt (IR8). In addition, we show that the coactivator peroxisome proliferator-activated receptor- coactivator-1 was capable of stimulating the HNF-4 -dependent transactivation of apoAV promoter. Furthermore, analyses in human hepatic cells demonstrated that AMP-activated protein kinase (AMPK) and the MAPK signaling pathway regulate human apoAV expression and suggested that this regulation may be mediated, at least in part, by changes in HNF-4 . Intriguingly, EMSAs and mice with a liver-specific disruption of the HNF-4 gene revealed a species-distinct regulation of apoAV by HNF-4 , which resembles that of a subset of HNF-4 target genes. Taken together, our data provide new insights into the binding properties and the modulation of HNF-4 and underscore the role of HNF-4 in regulating triglyceride metabolism.
Resumo:
We describe here the construction of a delivery system for stable and directed insertion of gene constructs in a permissive chromosomal site of the bacterial wilt pathogen Ralstonia solanacearum. The system consists of a collection of suicide vectors the Ralstonia chromosome (pRC) series that carry an integration element flanked by transcription terminators and two sequences of homology to the chromosome of strain GMI1000, where the integration element is inserted through a double recombination event. Unique restriction enzyme sites and a GATEWAY cassette enable cloning of any promoter::gene combination in the integration element. Variants endowed with different selectable antibiotic resistance genes and promoter::gene combinations are described. We show that the system can be readily used in GMI1000 and adapted to other R. solanacearum strains using an accessory plasmid. We prove that the pRC system can be employed to complement a deletion mutation with a single copy of the native gene, and to measure transcription of selected promoters in monocopy both in vitro and in planta. Finally, the system has been used to purify and study secretion type III effectors. These novel genetic tools will be particularly useful for the construction of recombinant bacteria that maintain inserted genes or reporter fusions in competitive situations (i.e., during plant infection).
Resumo:
The plant cell wall is a strong fibrillar network that gives each cell its stable shape. It is constituted by a network of cellulose microfibrils embedded in a matrix of polysaccharides, such as xyloglucans. To enlarge, cells selectively loosen this network. Moreover, there is a pectin-rich intercellular material, the middle lamella, cementing together the walls of adjacent plant cells. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a group of enzymes involved in the reorganisation of the cellulose-xyloglucan framework by catalysing cleavage and re-ligation of the xyloglucan chains in the plant cell wall, and are considered cell wall loosening agents. In the laboratory, it has been isolated and characterised a XTH gene, ZmXTH1, from an elongation root cDNA library of maize. To address the cellular function of ZmXTH1, transgenic Arabidopsis thaliana plants over-expressing ZmXTH1 (under the control of the CaMV35S promoter) were generated. The aim of the work performed was therefore the characterisation of these transgenic plants at the ultrastructural level, by transmission electron microscopy (TEM).The detailed cellular phenotype of transgenic plants was investigated by comparing ultra-thin transverse sections of basal stem of 5-weeks old plants of wild type (Col 0) and 35S-ZmXTH1 Arabidopsis plants. Transgenic plants show modifications in the cell walls, particularly a thicker middle lamella layer with respect the wild type plants, supporting the idea that the overexpression of ZmXTH1 could imply a pronounced wall-loosening. In sum, the work carried out reinforces the idea that ZmXTH1 is involved in the cell wall loosening process in maize.
Resumo:
L’objectiu d’aquest projecte és la comparació, des del punt de vista ambiental, de l’envasat del vi mitjançant ampolles de vidre i mitjançant el sistema “Bag-in-Box” reutilitzable.
Resumo:
Projecte de recerca elaborat a partir d’una estada al Laboratory of Archaeometry del National Centre of Scientific Research “Demokritos” d’Atenes, Grècia, entre juny i setembre 2006. Aquest estudi s’emmarca dins d’un context més ampli d’estudi del canvi tecnològic que es documenta en la producció d’àmfores de tipologia romana durant els segles I aC i I dC en els territoris costaners de Catalunya. Una part d’aquest estudi contempla el càlcul de les propietats mecàniques d’aquestes àmfores i la seva avaluació en funció de la tipologia amforal, a partir de l’Anàlisi d’Elements Finits (AEF). L’AEF és una aproximació numèrica que té el seu origen en les ciències d’enginyeria i que ha estat emprada per estimar el comportament mecànic d’un model en termes, per exemple, de deformació i estrès. Així, un objecte, o millor dit el seu model, es dividit en sub-dominis anomenats elements finits, als quals se’ls atribueixen les propietats mecàniques del material en estudi. Aquests elements finits estan connectats formant una xarxa amb constriccions que pot ser definida. En el cas d’aplicar una força determinada a un model, el comportament de l’objecte pot ser estimat mitjançant el conjunt d’equacions lineals que defineixen el rendiment dels elements finits, proporcionant una bona aproximació per a la descripció de la deformació estructural. Així, aquesta simulació per ordinador suposa una important eina per entendre la funcionalitat de ceràmiques arqueològiques. Aquest procediment representa un model quantitatiu per predir el trencament de l’objecte ceràmic quan aquest és sotmès a diferents condicions de pressió. Aquest model ha estat aplicat a diferents tipologies amforals. Els resultats preliminars mostren diferències significatives entre la tipologia pre-romana i les tipologies romanes, així com entre els mateixos dissenys amforals romans, d’importants implicacions arqueològiques.
Resumo:
Proyecto de investigación realizado a partir de una estancia en el Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC), Argentina, entre febrero y abril del 2007. La simulación numérica de problemas de mezclas mediante el Particle Finite Element Method (PFEM) es el marco de estudio de una futura tesis doctoral. Éste es un método desarrollado conjuntamente por el CIMEC y el Centre Internacional de Mètodos Numèrics en l'Enginyeria (CIMNE-UPC), basado en la resolución de las ecuaciones de Navier-Stokes en formulación Lagrangiana. El mallador ha sido implementado y desarrollado por Dr. Nestor Calvo, investigador del CIMEC. El desarrollo del módulo de cálculo corresponde al trabajo de tesis de la beneficiaria. La correcta interacción entre ambas partes es fundamental para obtener resultados válidos. En esta memoria se explican los principales aspectos del mallador que fueron modificados (criterios de refinamiento geométrico) y los cambios introducidos en el módulo de cálculo (librería PETSc, algoritmo predictor-corrector) durante la estancia en el CIMEC. Por último, se muestran los resultados obtenidos en un problema de dos fluidos inmiscibles con transferencia de calor.
Resumo:
Research in business dynamics has been advancing rapidly in the last years but the translation of the new knowledge to industrial policy design is slow. One striking aspect in the policy area is that although research and analysis do not identify the existence of an specific optimal rate of business creation and business exit, governments everywhere have adopted business start-up support programs with the implicit principle that the more the better. The purpose of this article is to contribute to understand the implications of the available research for policy design. Economic analysis has identified firm heterogeneity as being the most salient characteristic of industrial dynamics, and so a better knowledge of the different types of entrepreneur, their behavior and their specific contribution to innovation and growth would enable us to see into the ‘black box’ of business dynamics and improve the design of appropriate public policies. The empirical analysis performed here shows that not all new business have the same impact on relevant economic variables, and that self-employment is of quite a different economic nature to that of firms with employees. It is argued that public programs should not promote indiscriminate entry but rather give priority to able entrants with survival capacities. Survival of entrants is positively related to their size at birth. Innovation and investment improve the likelihood of survival of new manufacturing start-ups. Investment in R&D increases the risk of failure in new firms, although it improves the competitiveness of incumbents.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.