4 resultados para Swath bathymetry
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We used high-resolution swath-bathymetry data to characterise the morphology of the abandoned subaqueous Sol de Riu delta lobe in the Ebro Delta, Western Mediterranean Sea. This study aims to assess the influence of an abandoned delta lobe on present-day coastal dynamics in a micro-tidal environment. Detailed mapping of the relict Sol de Riu lobe also showed a set of bedforms interpreted as footprints of human activities: seasonal V-shaped depressions on the middle shoreface due to boat anchoring and old trawling marks between 16 and 18 m water depth. Estimations of the mobility of bottom sediment showed that the shallowest shoreface (i.e. less than 7 m depth) is the most dynamic part of the relict lobe, while the middle shoreface experienced significant morphological changes since the lobe was abandoned. The deepest shoreface (i.e. water depth in excess of 15 m), which corresponds to the front of the lobe, is defined by a very small potential for morphological change. Simulations showed that while the relict lobe does not significantly affect the typical short period waves (Tp ≈4 s) in the study area, it does interfere with the most energetic wave conditions (Tp ≥ 7 s) acting as a shoal leading to the concentration of wave energy along the shoreline northwest of the lobe. The consequence of such modification of the high-energy wave propagation pattern by the relict lobe is an alteration of the wave-induced littoral sediment dynamics with respect to a situation without the lobe.
Resumo:
High-resolution side scan sonar has been used for mapping the seafloor of the Ría de Pontevedra. Four backscatter patterns have been mapped within the Ría: (1) Pattern with isolated reflections, correlated with granite and metamorphic outcrops and located close to the coastal prominence and Ons and Onza Islands. (2) Pattern of strong reflectivity usually located around the basement outcrops and near the coastline and produced by coarse-grained sediment. (3) Pattern of weak backscatter is correlated with fine sand to mud and comprising large areas in the central and deep part of the Ría, where the bottom currents are weak. It is generally featureless, except where pockmarks and anthropogenic features are present. (4) Patches of strong and weak backscatter are located in the boundary between coarse and fine-grained sediments and they are due to the effect of strong bottom currents. The presence of megaripples associated to both patterns of strong reflectivity and sedimentary patches indicate bedload transport of sediment during high energy conditions (storms). Side scan sonar records and supplementary bathymetry, bottom samples and hydrodynamic data reveal that the distribution of seafloor sediment is strongly related to oceanographic processes and the particular morphology and topography of the Ría.
Resumo:
We analyse the variations produced on tsunami propagation and impact over a straight coastline because of the presence of a submarine canyon incised in the continental margin. For ease of calculation we assume that the shoreline and the shelf edge are parallel and that the incident wave approaches them normally. A total of 512 synthetic scenarios have been computed by combining the bathymetry of a continental margin incised by a parameterised single canyon and the incident tsunami waves. The margin bathymetry, the canyon and the tsunami waves have been generated using mathematical functions (e.g. Gaussian). Canyon parameters analysed are: (i) incision length into the continental shelf, which for a constant shelf width relates directly to the distance from the canyon head to the coast, (ii) canyon width, and (iii) canyon orientation with respect to the shoreline. Tsunami wave parameters considered are period and sign. The COMCOT tsunami model from Cornell University was applied to propagate the waves across the synthetic bathymetric surfaces. Five simulations of tsunami propagation over a non-canyoned margin were also performed for reference. The analysis of the results reveals a strong variation of tsunami arrival times and amplitudes reaching the coastline when a tsunami wave travels over a submarine canyon, with changing maximum height location and alongshore extension. In general, the presence of a submarine canyon lowers the arrival time to the shoreline but prevents wave build-up just over the canyon axis. This leads to a decrease in tsunami amplitude at the coastal stretch located just shoreward of the canyon head, which results in a lower run-up in comparison with a non-canyoned margin. Contrarily, an increased wave build-up occurs on both sides of the canyon head, generating two coastal stretches with an enhanced run-up. These aggravated or reduced tsunami effects are modified with (i) proximity of the canyon tip to the coast, amplifying the wave height, (ii) canyon width, enlarging the areas with lower and higher maximum height wave along the coastline, and (iii) canyon obliquity with respect to the shoreline and shelf edge, increasing wave height shoreward of the leeward flank of the canyon. Moreover, the presence of a submarine canyon near the coast produces a variation of wave energy along the shore, eventually resulting in edge waves shoreward of the canyon head. Edge waves subsequently spread out alongshore reaching significant amplitudes especially when coupling with tsunami secondary waves occurs. Model results have been groundtruthed using the actual bathymetry of Blanes Canyon area in the North Catalan margin. This paper underlines the effects of the presence, morphology and orientation of submarine canyons as a determining factor on tsunami propagation and impact, which could prevail over other effects deriving from coastal configuration.
Resumo:
A detailed analysis of the morphology and the Holocene seismic and sequence stratigraphy and architecture of the infralittoral sedimentary environment of the El Masnou coast (Catalonia, NW Mediterranean Sea) was carried out using multibeam bathymetry and GeoPulse seismic data. This environment extends down to 26-30 m water depth, and is defined morphologically by two depositional wedges whose seafloor is affected by erosive furrows, slides, fields of large- and small-scale wavy bedforms, and dredging trenches and pits. Erosive terraces are also identified in the transition domain toward the inner continental shelf. The Holocene stratigraphy of the infralittoral environment is defined by two major seismic sequences (lower and upper), each one formed by internal seismic units. The sequences and units are characterised by downlapping surfaces made up of deposits formed by progradation of coastal lithosomes. The stratigraphy and stratal architecture, displaying a retrogradational arrangement with progradational patterns of minor order, were controlled by different sea-level positions. The stratigraphic division represents the coastal response to the last fourth-order transgressive and highstand conditions, modulated by small-scale sea-level oscillations (≈1-2 m) of fith to sixth order. This study also highlights the advantage of an integrated analysis using acoustic/seismic methods for practical assessment of the anthropogenic effects on infralittoral domains based on the association of marine geological observations.