47 resultados para Surfaces and Interfaces

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variation in the emission of Si+ ions from ion-beam-induced oxidized silicon surfaces has been studied. The stoichiometry and the electronic structure of the altered layer has been characterized using x-ray photoelectron spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates the strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30 °. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the corresponding valence-band structures also differ among each other. A comparison between experimental measurements and theoretically calculated Si and SiO2 valence bands indicates that the valence bands for the altered layers are formed by a combination of those two. Since Si-Si bonds are present in the suboxide molecules, the top of the respective new valence bands are formed by the corresponding 3p-3p Si-like subbands, which extend up to the Si Fermi level. The changes in stoichiometry and electronic structure have been correlated with the emission of Si+ ions from these surfaces. From the results a general model for the Si+ ion emission is proposed combining the resonant tunneling and local-bond-breaking models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Comment on the Letter by Mark Mineev-Weinstein, Phys. Rev. Lett. 80, 2113 (1998). The authors of the Letter offer a Reply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Reply to the Comment by Jing-Dong Bao and Yan Zhou.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of hydrogen desorption from amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in a-Si is about 1.15 eV. It is shown that this result is valid for a-Si:H films, too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An anomalously long transient is needed to achieve a steady pressurization of a fluid when forced to flow through micronarrowed channels under constant mechanical driving. This phenomenon, known as the "bottleneck effect" is here revisited from a different perspective, by using confined displacements of interfacial fluids. Compared to standard microfluidics, such effect admits in this case a neat quantitative characterization, which reveals intrinsic material characteristics of flowing monolayers and permits to envisage strategies for their controlled micromanipulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La2/3Ca1/3MnO3 (LCMO) films have been deposited on (110)-oriented SrTiO3 (STO) substrates. X-ray diffraction and high-resolution electron microscopy reveal that the (110) LCMO films are epitaxial and anisotropically in-plane strained, with higher relaxation along the [1¿10] direction than along the [001] direction; x-ray absorption spectroscopy data signaled the existence of a single intermediate Mn3+/4+ 3d-state at the film surface. Their magnetic properties are compared to those of (001) LCMO films grown simultaneously on (001) STO substrates It is found that (110) LCMO films present a higher Curie temperature (TC) and a weaker decay of magnetization when approaching TC than their (001) LCMO counterparts. These improved films have been subsequently covered by nanometric STO layers. Conducting atomic-force experiments have shown that STO layers, as thin as 0.8 nm, grown on top of the (110) LCMO electrode, display good insulating properties. We will show that the electric conductance across (110) STO layers, exponentially depending on the barrier thickness, is tunnel-like. The barrier height in STO (110) is found to be similar to that of STO (001). These results show that the (110) LCMO electrodes can be better electrodes than (001) LCMO for magnetic tunnel junctions, and that (110) STO are suitable insulating barriers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of a disordered medium in the growth of unstable interfaces are studied by means of two local models with multiplicative and additive quenched disorder, respectively. For short times and large pushing the multiplicative quenched disorder is equivalent to a time-dependent noise. In this regime, the linear dispersion relation contains a destabilizing contribution introduced by the noise. For long times, the interface always gets pinned. We model the systematics of the pinned shapes by means of an effective nonlinear model. These results show good agreement with numerical simulations. For the additive noise we find numerically that a depinning transition occurs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe a simple method to automate the geometric optimization of molecular orbital calculations of supermolecules on potential surfaces that are corrected for basis set superposition error using the counterpoise (CP) method. This method is applied to the H-bonding complexes HF/HCN, HF/H2O, and HCCH/H2O using the 6-31G(d,p) and D95 + + (d,p) basis sets at both the Hartree-Fock and second-order Møller-Plesset levels. We report the interaction energies, geometries, and vibrational frequencies of these complexes on the CP-optimized surfaces; and compare them with similar values calculated using traditional methods, including the (more traditional) single point CP correction. Upon optimization on the CP-corrected surface, the interaction energies become more negative (before vibrational corrections) and the H-bonding stretching vibrations decrease in all cases. The extent of the effects vary from extremely small to quite large depending on the complex and the calculational method. The relative magnitudes of the vibrational corrections cannot be predicted from the H-bond stretching frequencies alone

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Particles moving on crystalline surfaces and driven by external forces or flow fields can acquire velocities along directions that deviate from that of the external force. This effect depends upon the characteristics of the particles, most notably particle size or particle index of refraction, and can therefore be (and has been) used to sort different particles. We introduce a simple model for particles subject to thermal fluctuations and moving in appropriate potential landscapes. Numerical results are compared to recent experiments on landscapes produced with holographic optical tweezers and microfabricated technology. Our approach clarifies the relevance of different parameters, the direction and magnitude of the external force, particle size, and temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

compatible with the usual nonlocal model governed by surface tension that results from a macroscopic description. To explore this discrepancy, we exhaustively analyze numerical integrations of a phase-field model with dichotomic columnar disorder. We find that two distinct behaviors are possible depending on the capillary contrast between the two values of disorder. In a high-contrast case, where interface evolution is mainly dominated by the disorder, an inherent anomalous scaling is always observed. Moreover, in agreement with experimental work, the interface motion has to be described through a local model. On the other hand, in a lower-contrast case, the interface is dominated by interfacial tension and can be well modeled by a nonlocal model. We have studied both spontaneous and forced-flow imbibition situations, giving a complete set of scaling exponents in each case, as well as a comparison to the experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A class of exact solutions of Hele-Shaw flows without surface tension in a rotating cell is reported. We show that the interplay between injection and rotation modifies the scenario of formation of finite-time cusp singularities. For a subclass of solutions, we show that, for any given initial condition, there exists a critical rotation rate above which cusp formation is suppressed. We also find an exact sufficient condition to avoid cusps simultaneously for all initial conditions within the above subclass.