6 resultados para Superovulation in mare

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resum: El pemfigoid ampul•lar és una malaltia cutània autoimmune. La majoria dels pacients presenten autoanticossos contra proteïnes de la membrana basal de la pell, concretament en contra de la col·làgena XVII, específicament envers el epítop immunodominant, l’NC16A. La patogenicitat dels anticossos ha estat demostrada mitjançant experiments in vitro i in vivo. L’escassa homologia existent entre l’NC16A i el seu homòleg murí (NC14A), ha dificultat l’el·laboració de models animals d’aquesta malaltia. En aquest treball demostrem que el sèrum de pacients amb pemfigoid ampul•lar produeix separació dermo-epidèrmica en pell de ratolí humanitzada obtinguda a partir de cèl•lules mare humanes del provinents fol·licle pil·lós

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the legislative issues related toembryo research and human embryonic stem cell (hESC)research in Spain and the derivation of nine hESC lines atthe Center of Regenerative Medicine in Barcelona. You canfind the information for obtaining our lines for researchpurposes at blc@cmrb.eu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA cytosine methylation has been demonstrated to be a central epigenetic modification that has essential roles in a myriad of cellular processes. Some examples of these include gene regulation, DNA-protein interactions, cellular differentiation, X-inactivation, maintenance of genome integrity by suppressing transposable elements and viruses, embryogenesis, genomic imprinting and tumourigenesis. This list is increasingly growing thanks to recent advances in genome-wide technologies, like Whole Genome Bisulfite Sequencing (WGBS-Seq). The development of this technology in research has allowed the identification of new features of the DNA methylation landscape that was not possible using previous technologies, like Partially Methylated Domains (PMDs). PMDs have been found in several cell lines, as well as in both healthy and cancer primary samples. They have been described as regions with high variability in methylation levels across individual CpG sites and intermediate methylation levels on average with respect to the genome. Here, we performed an extensive search of PMDs in a big dataset of different haematopoietic primary cells from both myeloid and lymphoid lineages. We found and characterized significant PMDs in plasma B cells, confirming that PMDs are a phenomenon that is restricted to certain differentiated cells. Additionally, we found loci aberrantly hypomethylated in a myeloma sample which overlapped with plasma B cell PMDs. Genome-wide comparison of the myeloma and plasma B cell sample revealed that this is probably also the case for other loci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Circulating progenitor cells (CPC) treatments may have great potential for the recovery of neurons and brain function. OBJECTIVE: To increase and maintain CPC with a program of exercise, muscle electro-stimulation (ME) and/or intermittent-hypobaric-hypoxia (IHH), and also to study the possible improvement in physical or psychological functioning of participants with Traumatic Brain Injury (TBI). METHODS: Twenty-one participants. Four groups: exercise and ME group (EEG), cycling group (CyG), IHH and ME group (HEG) and control group (CG). Psychological and physical stress tests were carried out. CPC were measured in blood several times during the protocol. RESULTS: Psychological tests did not change. In the physical stress tests the VO2 uptake increased in the EEG and the CyG, and the maximal tolerated workload increased in the HEG. CPC levels increased in the last three weeks in EEG, but not in CyG, CG and HEG. CONCLUSIONS: CPC levels increased in the last three weeks of the EEG program, but not in the other groups and we did not detect performed psychological test changes in any group. The detected aerobic capacity or workload improvement must be beneficial for the patients who have suffered TBI, but exercise type and the mechanisms involved are not clear.