90 resultados para Strong Stability
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Why does the EU have an ambiguous and inconsistent democracy promotion (DP) policy towards the Mediterranean countries? This paper argues that the EU´s DP is determined by a crucial conflict of interests conceptualised as a stability – democracy dilemma. The EU has been attempting to promote democracy, but without risking the current stability and in connivance with incumbent autocratic regimes. In view of this dilemma, the four main characteristics of the EU´s DP promotion are explored, namely: gradualism, a strong notion of partnership-building, a narrow definition of civil society, and a strong belief in economic liberalisation. A fifth feature, relation of the EU with moderate Islamists, is analysed in the paper as it represents the most striking illustration of its contradictions. The paper concludes by arguing that the definition of a clear DP by the EU that considered engagement with moderate Islamists would represent a major step towards squaring its stability – democracy circle.
Resumo:
We analyze the failure process of a two-component system with widely different fracture strength in the framework of a fiber bundle model with localized load sharing. A fraction 0≤α≤1 of the bundle is strong and it is represented by unbreakable fibers, while fibers of the weak component have randomly distributed failure strength. Computer simulations revealed that there exists a critical composition αc which separates two qualitatively different behaviors: Below the critical point, the failure of the bundle is brittle, characterized by an abrupt damage growth within the breakable part of the system. Above αc, however, the macroscopic response becomes ductile, providing stability during the entire breaking process. The transition occurs at an astonishingly low fraction of strong fibers which can have importance for applications. We show that in the ductile phase, the size distribution of breaking bursts has a power law functional form with an exponent μ=2 followed by an exponential cutoff. In the brittle phase, the power law also prevails but with a higher exponent μ=92. The transition between the two phases shows analogies to continuous phase transitions. Analyzing the microstructure of the damage, it was found that at the beginning of the fracture process cracks nucleate randomly, while later on growth and coalescence of cracks dominate, which give rise to power law distributed crack sizes.
Resumo:
We consider the linearized semiclassical Einstein equations for small deviations around de Sitter spacetime including the vacuum polarization effects of conformal fields. Employing the method of order reduction, we find the exact solutions for general metric perturbations (of scalar, vector and tensor type). Our exact (nonperturbative) solutions show clearly that in this case de Sitter is stable with respect to small metric deviations and a late-time attractor. Furthermore, they also reveal a breakdown of perturbative solutions for a sufficiently long evolution inside the horizon. Our results are valid for any conformal theory, even self-interacting ones with arbitrarily strong coupling.
Resumo:
We are interested in coupled microscopic/macroscopic models describing the evolution of particles dispersed in a fluid. The system consists in a Vlasov-Fokker-Planck equation to describe the microscopic motion of the particles coupled to the Euler equations for a compressible fluid. We investigate dissipative quantities, equilibria and their stability properties and the role of external forces. We also study some asymptotic problems, their equilibria and stability and the derivation of macroscopic two-phase models.
Resumo:
This paper aims to account for varying economic performances and political stability under dictatorship. We argue that economic welfare and social order are the contemporary relevant factors of political regimes' stability. Societies with low natural level of social order tend to tolerate predatory behavior from dictators in exchange of a provision of civil peace. The fear of anarchy may explain why populations are locked in the worst dictatorships. In contrast, in societies enjoying a relative natural civil peace, dictatorship is less likely to be predatory because low economic welfare may destabilize it.
Resumo:
We study two-sided matching markets with couples and show that for a natural preference domain for couples, the domain of weakly responsive preferences, stable outcomes can always be reached by means of decentralized decision making. Starting from an arbitrary matching, we construct a path of matchings obtained from `satisfying' blocking coalitions that yields a stable matching. Hence, we establish a generalization of Roth and Vande Vate's (1990) result on path convergence to stability for decentralized singles markets. Furthermore, we show that when stable matchings exist, but preferences are not weakly responsive, for some initial matchings there may not exist any path obtained from `satisfying' blocking coalitions that yields a stable matching.
Resumo:
We study the incentives of candidates to enter or to exit elections in order to strategically affect the outcome of a voting correspondence. We extend the results of Dutta, Jackson and Le Breton (2000), who only considered single-valued voting procedures by admitting that the outcomes of voting may consist of sets of candidates. We show that, if candidates form their preferences over sets according to Expected Utility Theory and Bayesian updating, every unanimous and non dictatorial voting correspondence violates candidate stability. When candidates are restricted to use even chance prior distributions, only dictatorial or bidictatorial rules are unanimous and candidate stable. We also analyze the implications of using other extension criteria to define candidate stability that open the door to positive results.
Resumo:
Qin [J. Eco. Th., 1996] recently showed that in a game of endogenous formation of cooperation structure, if the underlying TU-game is superadditive, then the full cooperation structure is stable. In this note, we characterize the class of games that ensure the stability of the full cooperation structure, and show that this class is much larger than that of superadditive TU-games.
Resumo:
Consider a Riemannian manifold equipped with an infinitesimal isometry. For this setup, a unified treatment is provided, solely in the language of Riemannian geometry, of techniques in reduction, linearization, and stability of relative equilibria. In particular, for mechanical control systems, an explicit characterization is given for the manner in which reduction by an infinitesimal isometry, and linearization along a controlled trajectory "commute." As part of the development, relationships are derived between the Jacobi equation of geodesic variation and concepts from reduction theory, such as the curvature of the mechanical connection and the effective potential. As an application of our techniques, fiber and base stability of relative equilibria are studied. The paper also serves as a tutorial of Riemannian geometric methods applicable in the intersection of mechanics and control theory.
Resumo:
This paper is devoted to the analysis of all constitutions equipped with electoral systems involving two step procedures. First, one candidate is elected in every jurisdiction by the electors in that jurisdiction, according to some aggregation procedure. Second, another aggregation procedure collects the names of the jurisdictional winners in order to designate the final winner. It appears that whenever individuals are allowed to change jurisdiction when casting their ballot, they are able to manipulate the result of the election except in very few cases. When imposing a paretian condition on every jurisdictions voting rule, it is shown that, in the case of any finite number of candidates, any two steps voting rule that is not manipulable by movement of the electors necessarily gives to every voter the power of overruling the unanimity on its own. A characterization of the set of these rules is next provided in the case of two candidates.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We consider an autonomous differential system in Rn with a periodic orbit and we give a new method for computing the characteristic multipliers associated to it. Our method works when the periodic orbit is given by the transversal intersection of n ¡ 1 codimension one hypersurfaces and is an alternative to the use of the first order variational equations. We apply it to study the stability of the periodic orbits in several examples, including a periodic solution found by Steklov studying the rigid body dynamics.
Resumo:
We prove global well-posedness in the strong sense for stochastic generalized porous media equations driven by locally square integrable martingales with stationary independent increments.