34 resultados para Stick-slip
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Velocity has been measured as a function of time for propagating crack tips as water is injected into solutions of end-capped associating polymers in a rectanguar Hele-Shaw cell. Measurements were performed for flows with different values of cell gap, channel width, polymer molecular weight, and polymer concentration. The condition for the onset of fracturelike behavior is well described by a Deborah number which uses the shear-thinning shear rate of the polymer solution as a characteristic frequency for network relaxation. At low molecular weight, the onset of fracturelike pattern evolution is accompanied by an abrupt jump in tip velocity, followed by a lower and approximately constant acceleration. At high molecular weight, the transition to fracturelike behavior involves passing through a regime that may be understood in terms of stick-slip dynamics. The crack-tip wanders from side to side and fluctuates (in both speed and velocity along the channel) with a characteristic frequency which depends linearly on the invading fluid injection rate.
Resumo:
The enhanced flow in carbon nanotubes is explained using a mathematical model that includes a depletion layer with reduced viscosity near the wall. In the limit of large tubes the model predicts no noticeable enhancement. For smaller tubes the model predicts enhancement that increases as the radius decreases. An analogy between the reduced viscosity and slip-length models shows that the term slip-length is misleading and that on surfaces which are smooth at the nanoscale it may be thought of as a length-scale associated with the size of the depletion region and viscosity ratio. The model therefore provides a physical interpretation of the classical Navier slip condition and explains why `slip-lengths' may be greater than the tube radius.
Resumo:
The As Pontes basin (12 km2), NW Iberian Peninsula, is bounded by a double restraining bend of a dextral strike-slip fault, which is related to the western onshore end of the Pyrenean belt. Surface and subsurface data obtained from intensive coal exploration and mining in the basin since the 1960s together with additional structural and stratigraphic sequence analysis allowed us to determine the geometric relationships between tectonic structures and stratigraphic markers. The small size of the basin and the large amount of quality data make the As Pontes basin a unique natural laboratory for improving our understanding of the origin and evolution of restraining bends. The double restraining bend is the end stage of the structural evolution of a compressive underlapping stepover, where the basin was formed. During the first stage (stepover stage), which began ca. 30 Ma ago (latest Rupelian) and lasted 3.4 My, two small isolated basins bounded by thrusts and normal faults were formed. For 1.3 My, the strike-slip faults, which defined the stepover, grew towards each other until joining and forming the double restraining bend, which bounds one large As Pontes basin (transition stage). The history of the basin was controlled by the activity of the double restraining bend for a further 3.4 My (restraining bend stage) and ended in mid-Aquitanian times (ca. 22 Ma).
Resumo:
The As Pontes basin (12 km2), NW Iberian Peninsula, is bounded by a double restraining bend of a dextral strike-slip fault, which is related to the western onshore end of the Pyrenean belt. Surface and subsurface data obtained from intensive coal exploration and mining in the basin since the 1960s together with additional structural and stratigraphic sequence analysis allowed us to determine the geometric relationships between tectonic structures and stratigraphic markers. The small size of the basin and the large amount of quality data make the As Pontes basin a unique natural laboratory for improving our understanding of the origin and evolution of restraining bends. The double restraining bend is the end stage of the structural evolution of a compressive underlapping stepover, where the basin was formed. During the first stage (stepover stage), which began ca. 30 Ma ago (latest Rupelian) and lasted 3.4 My, two small isolated basins bounded by thrusts and normal faults were formed. For 1.3 My, the strike-slip faults, which defined the stepover, grew towards each other until joining and forming the double restraining bend, which bounds one large As Pontes basin (transition stage). The history of the basin was controlled by the activity of the double restraining bend for a further 3.4 My (restraining bend stage) and ended in mid-Aquitanian times (ca. 22 Ma).
Resumo:
This paper models a legislature in which the same agenda setter serves for two periods, showing how he can exploit a legislature (completely) in the first period by promising future benefits to legislators who support him. In equilibrium, a large majority of legislators vote for the first-period proposal because they thereby maintain the chance of belonging to the minimum winning coalition in the future. Legislators may therefore approve policies by large majorities, or even unanimously, that benefit few, or even none, of them. The results are robust; but institutional arrangements (such as entitlements) can reduce the agenda setter's power by reducing his discretion to reward and punish legislators, and rules (such as sequential voting) can increase a legislator's ability to resist exploitation. Keywords: Legislative bargaining, distributive politics, agenda-setting, proposal power. JEL C72, D72, D78.
Resumo:
Computer simulations of the dynamics of a colloidal particle suspended in a fluid confined by an interface show that the asymptotic decay of the velocity correlation functions is algebraic. The exponents of the long-time tails depend on the direction of motion of the particle relative to the surface, as well as on the specific nature of the boundary conditions. In particular, we find that for the angular velocity correlation function, the decay in the presence of a slip surface is faster than the one corresponding to a stick one. An intuitive picture is introduced to explain the various long-time tails, and the simulations are compared with theoretical expressions where available.
Resumo:
We study manager-employee interactions in experiments set in a corporate environment where payoffs depend on employees coordinating at high effort levels; the underlying game being played repeatedly by employees is a weak-link game. In the absence of managerial intervention subjects invariably slip into coordination failure. To overcome a history of coordination failure, managers have two instruments at their disposal, increasing employees' financial incentives to coordinate and communication with employees. We find that communication is a more effective tool than incentive changes for leading organizations out of performance traps. Examining the content of managers' communication, the most effective messages specifically request a high effort, point out the mutual benefits of high effort, and imply that employees are being paid well.
Resumo:
The ceramic shell is a material mainly used for making foundry molds. This research demonstrates that ceramic shell can be used for making sculptures with exceptional definition in its finish. The research has identified a number of advantages of the material to meet the challenges of an artist during the making of a sculpture. The research has been developed in six stages: In the first stage data were collected from the chaff as the process material. This was the starting point for research. In the second stage, we have set the appropriate composition of the slurry, both in percentage and type of binder, and firing curve. To this end, we evaluated the application characteristics, thickness, drying, mechanical strength, the reduction coefficient and porosity. In the third stage it was observed that the husk is suitable for all types of materials acting as support. It was also found that the slurry can be used with various sculptural processes: modeling, molding using silicone or plaster mold, shuttering, with internal metal frame, and so on. In addition, we have established methods to repair and modify the husk by hand and power tools. In the fourth stage we have found ways to modify the surface of the husk with other minerals that affect the structure: introduction of filing of copper, bronze and iron in the slurry ceramics, different staining procedure in hot or cold, by enamel slip, and so on. In the fifth stage sculptures were made using the methods established in the previous stages, to verify this hypothesis. The sixth stage, which is annexed, contains a new method to process the ceramic shell as a mold in casting that emerged from the proven methods in the investigation.
Resumo:
Why does not gravity make drops slip down the inclined surfaces, e.g., plant leaves? The current explanation is based on the existence of surface inhomogeneities, which cause a sustaining force that pins the contact line. Following this theory, the drop remains in equilibrium until a critical value of the sustaining force is reached. We propose an alternative analysis, from the point of view of energy balance, for the particular case in which the drop leaves a liquid film behind. The critical angle of the inclined surface at which the drop slips down is predicted. This result does not depend explicitly on surface inhomogeneities, but only on the drop size and surface tensions. There is good agreement with experiments for contact angles below 90° where the formation of the film is expected, whereas for greater contact angles great discrepancies arise
Resumo:
Experiments in which subjects play simultaneously several finite prisoner's dilemma supergames with and without an outside optionreveal that: (i) subjects use probabilistic start and endeffect behaviour, (ii) the freedom to choose whether to play the prisoner's dilemma game enhances cooperation, (iii) if the payoff for simultaneous defection is negative, subjects' tendency to avoid losses leads them to cooperate; while this tendency makes them stick to mutual defection if its payoff is positive.
Resumo:
Ultramafic rocks, mainly serpentinized peridotites of mantle origin, are mostly associated with the ophiolites of Mesozoic age that occur in belts along three of the margins of the Caribbean plate. The most extensive exposures are in Cuba. The ultramafic-mafic association (ophiolites) were formed and emplaced in several different tectonic environments. Mineralogical studies of the ultramafic rocks and the chemistry of the associated mafic rocks indicate that most of the ultramafic-mafic associations in both the northern and southern margins of the plate were formed in arc-related environments. There is little mantle peridotite exposed in the ophiolitic associations of the west coast of Central America, in the south Caribbean in Curacao and in the Andean belts in Colombia. In these occurrences the chemistry and age of the mafic rocks indicates that this association is mainly part of the 89 Ma Caribbean plateau province. The age of the mantle peridotites and associated ophiolites is probably mainly late Jurassic or Early Cretaceous. Emplacement of the ophiolites possibly began in the Early Cretaceous in Hispaniola and Puerto Rico, but most emplacement took place in the Late Cretaceous to Eocene (e.g. Cuba). Along the northern South America plate margin, in the Caribbean mountain belt, emplacement was by major thrusting and probably was not completed until the Oligocene or even the early Miocene. Caribbean mantle peridotites, before serpentinization, were mainly harzburgites, but dunites and lherzolites are also present. In detail, the mineralogical and chemical composition varies even within one ultramafic body, reflecting melting processes and peridotite/melt interaction in the upper mantle. At least for the northern Caribbean, uplift (postemplacement tectonics) exposed the ultramafic massifs as a land surface to effective laterization in the beginning of the Miocene. Tectonic factors, determining the uplift, exposing the peridotites to weathering varied. In the northern Caribbean, in Guatemala, Jamaica, and Hispaniola, uplift occurred as a result of transpresional movement along pre-existing major faults. In Cuba, uplift occurred on a regional scale, determined by isostatic adjustment. In the south Caribbean, uplift of the Cordillera de la Costa and Serrania del Interior exposing the peridotites, also appears to be related to strike-slip movement along the El Pilar fault system. In the Caribbean, Ni-laterite deposits are currently being mined in the central Dominican Republic, eastern Cuba, northern Venezuela and northwest Colombia. Although apparently formed over ultramafic rocks of similar composition and under similar climatic conditions, the composition of the lateritic soils varies. Factors that probably determined these differences in laterite composition are geomorphology, topography, drainage and tectonics. According to the mineralogy of principal ore-bearing phases, Dominican Ni-laterite deposits are classified as the hydrous silicate-type. The main Ni-bearing minerals are hydrated Mg-Ni silicates (serpentine and ¿garnierite¿) occurring deeper in the profile (saprolite horizon). In contrast, in the deposits of eastern Cuba, the Ni and Cooccurs mainly in the limonite zone composed of Fe hydroxides and oxides as the dominant mineralogy in the upper part of the profile, and are classified as the oxide-type.
Resumo:
AMADEUS is a dexterous subsea robot hand incorporating force and slip contact sensing, using fluid filled tentacles for fingers. Hydraulic pressure variations in each of three flexible tubes (bellows) in each finger create a bending moment, and consequent motion or increase in contact force during grasping. Such fingers have inherent passive compliance, no moving parts, and are naturally depth pressure-compensated, making them ideal for reliable use in the deep ocean. In addition to the mechanical design, development of the hand has also considered closed loop finger position and force control, coordinated finger motion for grasping, force and slip sensor development/signal processing, and reactive world modeling/planning for supervisory `blind grasping¿. Initially, the application focus is for marine science tasks, but broader roles in offshore oil and gas, salvage, and military use are foreseen. Phase I of the project is complete, with the construction of a first prototype. Phase I1 is now underway, to deploy the hand from an underwater robot arm, and carry out wet trials with users.
Resumo:
AMADEUS is a dexterous subsea robot hand incorporating force and slip contact sensing, using fluid filled tentacles for fingers. Hydraulic pressure variations in each of three flexible tubes (bellows) in each finger create a bending moment, and consequent motion or increase in contact force during grasping. Such fingers have inherent passive compliance, no moving parts, and are naturally depth pressure-compensated, making them ideal for reliable use in the deep ocean. In addition to the mechanical design, development of the hand has also considered closed loop finger position and force control, coordinated finger motion for grasping, force and slip sensor development/signal processing, and reactive world modeling/planning for supervisory `blind grasping¿. Initially, the application focus is for marine science tasks, but broader roles in offshore oil and gas, salvage, and military use are foreseen. Phase I of the project is complete, with the construction of a first prototype. Phase I1 is now underway, to deploy the hand from an underwater robot arm, and carry out wet trials with users.
Resumo:
A small, closed, lacustrine system developed during the restraining overstep stages of the Oligocene As Pontes strike-slip basin (Spain). The increase in basin accommodation and the headward spread of the drainage, which increased the water input, triggered a change from shallow, holomictic to deeper, meromictic conditions.
Resumo:
We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.