102 resultados para Statistical structures
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Recent advances on high-throughput technologies have produced a vast amount of protein sequences, while the number of high-resolution structures has seen a limited increase. This has impelled the production of many strategies to built protein structures from its sequence, generating a considerable amount of alternative models. The selection of the closest model to the native conformation has thus become crucial for structure prediction. Several methods have been developed to score protein models by energies, knowledge-based potentials and combination of both.Results: Here, we present and demonstrate a theory to split the knowledge-based potentials in scoring terms biologically meaningful and to combine them in new scores to predict near-native structures. Our strategy allows circumventing the problem of defining the reference state. In this approach we give the proof for a simple and linear application that can be further improved by optimizing the combination of Zscores. Using the simplest composite score () we obtained predictions similar to state-of-the-art methods. Besides, our approach has the advantage of identifying the most relevant terms involved in the stability of the protein structure. Finally, we also use the composite Zscores to assess the conformation of models and to detect local errors.Conclusion: We have introduced a method to split knowledge-based potentials and to solve the problem of defining a reference state. The new scores have detected near-native structures as accurately as state-of-art methods and have been successful to identify wrongly modeled regions of many near-native conformations.
Resumo:
The preceding two editions of CoDaWork included talks on the possible considerationof densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended theEuclidean structure of the simplex to a Hilbert space structure of the set of densitieswithin a bounded interval, and van den Boogaart (2005) generalized this to the setof densities bounded by an arbitrary reference density. From the many variations ofthe Hilbert structures available, we work with three cases. For bounded variables, abasis derived from Legendre polynomials is used. For variables with a lower bound, westandardize them with respect to an exponential distribution and express their densitiesas coordinates in a basis derived from Laguerre polynomials. Finally, for unboundedvariables, a normal distribution is used as reference, and coordinates are obtained withrespect to a Hermite-polynomials-based basis.To get the coordinates, several approaches can be considered. A numerical accuracyproblem occurs if one estimates the coordinates directly by using discretized scalarproducts. Thus we propose to use a weighted linear regression approach, where all k-order polynomials are used as predictand variables and weights are proportional to thereference density. Finally, for the case of 2-order Hermite polinomials (normal reference)and 1-order Laguerre polinomials (exponential), one can also derive the coordinatesfrom their relationships to the classical mean and variance.Apart of these theoretical issues, this contribution focuses on the application of thistheory to two main problems in sedimentary geology: the comparison of several grainsize distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock orsediment, like their composition
Resumo:
Structural equation models are widely used in economic, socialand behavioral studies to analyze linear interrelationships amongvariables, some of which may be unobservable or subject to measurementerror. Alternative estimation methods that exploit different distributionalassumptions are now available. The present paper deals with issues ofasymptotic statistical inferences, such as the evaluation of standarderrors of estimates and chi--square goodness--of--fit statistics,in the general context of mean and covariance structures. The emphasisis on drawing correct statistical inferences regardless of thedistribution of the data and the method of estimation employed. A(distribution--free) consistent estimate of $\Gamma$, the matrix ofasymptotic variances of the vector of sample second--order moments,will be used to compute robust standard errors and a robust chi--squaregoodness--of--fit squares. Simple modifications of the usual estimateof $\Gamma$ will also permit correct inferences in the case of multi--stage complex samples. We will also discuss the conditions under which,regardless of the distribution of the data, one can rely on the usual(non--robust) inferential statistics. Finally, a multivariate regressionmodel with errors--in--variables will be used to illustrate, by meansof simulated data, various theoretical aspects of the paper.
Resumo:
We present a study of the influence of atomic order on the relative stability of the bcc and the 18R martensitic structures in a Cu2.96Al0.92Be0.12 crystal. Calorimetric measurements have shown that disorder increases the stability of the 18R phase, contrary to what happens in Cu-Zn-Al alloys for which it is the bcc phase that is stabilized by disordering the system. This different behavior has been explained in terms of a model recently reported. We have also proved that the entropy change at the martensitic transition is independent of the state of atomic order of the crystal, as predicted theoretically. Our results suggest that differences in the vibrational spectrum of the crystal due to different states of atomic order must be equal in the bcc and in the close-packed phases.
Resumo:
We discuss the dynamics of the transient pattern formation process corresponding to the splay Fréedericksz transition. The emergence and subsequent evolution of the spatial periodicity is here described in terms of the temporal dependence of the wave numbers corresponding to the maxima of the structure factor. Situations of perpendicular as well as oblique field-induced stripes relative to the initial orientation of the director are both examined with explicit indications of the time scales needed for their appearance and posterior development.
Resumo:
Many social phenomena involve a set of dyadic relations among agents whose actions may be dependent. Although individualistic approaches have frequently been applied to analyze social processes, these are not generally concerned with dyadic relations nor do they deal with dependency. This paper describes a mathematical procedure for analyzing dyadic interactions in a social system. The proposed method mainly consists of decomposing asymmetric data into their symmetrical and skew-symmetrical parts. A quantification of skew-symmetry for a social system can be obtained by dividing the norm of the skew-symmetrical matrix by the norm of the asymmetric matrix. This calculation makes available to researchers a quantity related to the amount of dyadic reciprocity. Regarding agents, the procedure enables researchers to identify those whose behavior is asymmetric with respect to all agents. It is also possible to derive symmetric measurements among agents and to use multivariate statistical techniques.
Resumo:
Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators.
Resumo:
Phase encoded nano structures such as Quick Response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase encoded QR codes. The system is illuminated using polarized light and the QR code is encoded using a phase-only random mask. Using classification algorithms it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase encoded QR codes using polarimetric signatures.
Resumo:
We describe an equivalence of categories between the category of mixed Hodge structures and a category of vector bundles on the toric complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalises the notion of R-split mixed Hodge structure and compute extensions in the category of mixed Hodge structures in terms of extensions of the corresponding vector bundles. We also give a relative version of this correspondence and apply it to define stratifications of the bases of the variations of mixed Hodge structure.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Qin [J. Eco. Th., 1996] recently showed that in a game of endogenous formation of cooperation structure, if the underlying TU-game is superadditive, then the full cooperation structure is stable. In this note, we characterize the class of games that ensure the stability of the full cooperation structure, and show that this class is much larger than that of superadditive TU-games.
Resumo:
This paper studies the stability of a finite local public goods economy in horizontal differentiation, where a jurisdiction's choice of the public good is given by an exogenous decision scheme. In this paper, we characterize the class of decision schemes that ensure the existence of an equilibrium with free mobility (that we call Tiebout equilibrium) for monotone distribution of players. This class contains all the decision schemes whose choice lies between the Rawlsian decision scheme and the median voter with mid-distance of the two median voters when there are ties. We show that for non-monotone distribution, there is no decision scheme that can ensure the stability of coalitions. In the last part of the paper, we prove the non-emptiness of the core of this coalition formation game
Resumo:
In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorification-nerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak equivalences various internal equivalences defined via Grothendieck topologies. Thirdly, DblCat inherits a model structure as a category of algebras over a 2-monad. Some of these model structures coincide and the different points of view give us further results about cofibrant replacements and cofi brant objects. As part of this program we give explicit descriptions and discuss properties of free double categories, quotient double categories, colimits of double categories, and several nerves and categorifications.
Resumo:
In this paper, we study formal deformations of Poisson structures, especially for three families of Poisson varieties in dimensions two and three. For these families of Poisson structures, using an explicit basis of the second Poisson cohomology space, we solve the deformation equations at each step and obtain a large family of formal deformations for each Poisson structure which we consider. With the help of an explicit formula, we show that this family contains, modulo equivalence, all possible formal eformations. We show moreover that, when the Poisson structure is generic, all members of the family are non-equivalent.
Resumo:
We consider a population of agents distributed on the unit interval. Agents form jurisdictions in order to provide a public facility and share its costs equally. This creates an incentive to form large entities. Individuals also incur a transportation cost depending on their location and that of the facility which makes small jurisdictions advantageous. We consider a fairly general class of distributions of agents and generalize previous versions of this model by allowing for non-linear transportation costs. We show that, in general, jurisdictions are not necessarily homogeneous. However, they are if facilities are always intraterritory and transportation costs are superadditive. Superadditivity can be weakened to strictly increasing and strictly concave when agents are uniformly distributed. Keywords: Consecutiveness, stratification, local public goods, coalition formation, country formation. JEL Classification: C71 (Cooperative Games), D71 (Social Choice; Clubs; Committees; Associations), H73 (Interjurisdictional Differentials and Their Effects).