9 resultados para Spiny lobster
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Molecular tools may help to uncover closely related and still diverging species from a wide variety of taxa and provide insight into the mechanisms, pace and geography of marine speciation. There is a certain controversy on the phylogeography and speciation modes of species-groups with an Eastern Atlantic-Western Indian Ocean distribution, with previous studies suggesting that older events (Miocene) and/or more recent (Pleistocene) oceanographic processes could have influenced the phylogeny of marine taxa. The spiny lobster genus Palinurus allows for testing among speciation hypotheses, since it has a particular distribution with two groups of three species each in the Northeastern Atlantic (P. elephas, P. mauritanicus and P. charlestoni) and Southeastern Atlantic and Southwestern Indian Oceans (P. gilchristi, P. delagoae and P. barbarae). In the present study, we obtain a more complete understanding of the phylogenetic relationships among these species through a combined dataset with both nuclear and mitochondrial markers, by testing alternative hypotheses on both the mutation rate and tree topology under the recently developed approximate Bayesian computation (ABC) methods. Results Our analyses support a North-to-South speciation pattern in Palinurus with all the South-African species forming a monophyletic clade nested within the Northern Hemisphere species. Coalescent-based ABC methods allowed us to reject the previously proposed hypothesis of a Middle Miocene speciation event related with the closure of the Tethyan Seaway. Instead, divergence times obtained for Palinurus species using the combined mtDNA-microsatellite dataset and standard mutation rates for mtDNA agree with known glaciation-related processes occurring during the last 2 my. Conclusion The Palinurus speciation pattern is a typical example of a series of rapid speciation events occurring within a group, with very short branches separating different species. Our results support the hypothesis that recent climate change-related oceanographic processes have influenced the phylogeny of marine taxa, with most Palinurus species originating during the last two million years. The present study highlights the value of new coalescent-based statistical methods such as ABC for testing different speciation hypotheses using molecular data.
Resumo:
Podeu consultar l'Informe complet a: http://hdl.handle.net/2445/24663
Resumo:
Podeu consultar l'Informe complet a: http://hdl.handle.net/2445/23662
Resumo:
Podeu consultar l'Informe complet a: http://hdl.handle.net/2445/23667
Resumo:
Podeu consultar l'Informe complet a: http://hdl.handle.net/2445/23669
Resumo:
Podeu consultar l'Informe complet a: http://hdl.handle.net/2445/23672
Resumo:
Podeu consultar l'Informe complet a: http://hdl.handle.net/2445/23675
Resumo:
Striatal adenosine A2A receptors (A2ARs) are highly expressed in medium spiny neurons (MSNs) of the indirect efferent pathway, where they heteromerize with dopamine D2 receptors (D2Rs). A2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A1 receptors (A1Rs). It has been hypothesized that postsynaptic A2AR antagonists should be useful in Parkinson's disease, while presynaptic A2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261) showed no clear preference. Radioligand-binding experiments were performed in cells expressing A2AR-D2R and A1R-A2AR heteromers to determine possible differences in the affinity of these compounds for different A2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A2AR when co-expressed with D2R than with A1R. KW-6002 showed the best relative affinity for A2AR co-expressed with D2R than co-expressed with A1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile. On the basis of their preferential pre- versus postsynaptic actions, SCH-442416 and KW-6002 may be used as lead compounds to obtain more effective antidyskinetic and antiparkinsonian compounds, respectively.
Resumo:
Typical Talaromyces ascomata were observed on dry Quercus suber leaf litter amongst the characteristic synnemata of Penicillium aureocephalum, and they appear to represent the sexual state of the latter species. The species is a synonym of the older Lasioderma flavovirens, and we propose the new combination Talaromyces flavovirens. Lectotype and epitype specimens are designated for this name. The defining characters of the asexual state include yellow, short-stalked, mycetozoan-like synnemata with an unusual, almost closed terminal head of penicillate conidiophores intermixed with sinuous hyphae, and dark green conidia. Ascomata could not be induced in culture, but PCR amplifications of mating-type genes indicate the species is heterothallic. In nature, ascocarp initials appear to be antheridia coiled around clavate ascogonia, similar to those of T. flavus, and the thick-walled, spiny ascospores are also similar to those of T. flavus. ITS barcodes and β-tubulin sequences place T. flavovirens in a clade with T. apiculatus, T. flavus, T. funiculosus, T. galapagensis, T. pinophilus, T. macrosporus, and seven other species.