105 resultados para Spectral Method

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starting with logratio biplots for compositional data, which are based on the principle of subcompositional coherence, and then adding weights, as in correspondence analysis, we rediscover Lewi's spectral map and many connections to analyses of two-way tables of non-negative data. Thanks to the weighting, the method also achieves the property of distributional equivalence

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pseudo-spectral time-domain (PSTD) method is an alternative time-marching method to classicalleapfrog finite difference schemes in the simulation of wave-like propagating phenomena. It is basedon the fundamentals of the Fourier transform to compute the spatial derivatives of hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acoustics simulations. However, one of the first issues to be solved consists on modeling wallabsorption. Unfortunately, there are no references in the technical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals to overcome this problem are presented, validated and compared to analytical solutions in different scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pseudo-Spectral Time Domain (PSTD) method is an alternative time-marching method to classical leapfrog finite difference schemes inthe simulation of wave-like propagating phenomena. It is based on the fundamentals of the Fourier transform to compute the spatial derivativesof hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acousticssimulations. However, one of the first issues to be solved consists on modeling wall absorption. Unfortunately, there are no references in thetechnical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals toovercome this problem are presented, validated and compared to analytical solutions in different scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usual image fusion methods inject features from a high spatial resolution panchromatic sensor into every low spatial resolution multispectral band trying to preserve spectral signatures and improve spatial resolution to that of the panchromatic sensor. The objective is to obtain the image that would be observed by a sensor with the same spectral response (i.e., spectral sensitivity and quantum efficiency) as the multispectral sensors and the spatial resolution of the panchromatic sensor. But in these methods, features from electromagnetic spectrum regions not covered by multispectral sensors are injected into them, and physical spectral responses of the sensors are not considered during this process. This produces some undesirable effects, such as resolution overinjection images and slightly modified spectral signatures in some features. The authors present a technique which takes into account the physical electromagnetic spectrum responses of sensors during the fusion process, which produces images closer to the image obtained by the ideal sensor than those obtained by usual wavelet-based image fusion methods. This technique is used to define a new wavelet-based image fusion method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correlation between the structural (average size and density) and optoelectronic properties [band gap and photoluminescence (PL)] of Si nanocrystals embedded in SiO2 is among the essential factors in understanding their emission mechanism. This correlation has been difficult to establish in the past due to the lack of reliable methods for measuring the size distribution of nanocrystals from electron microscopy, mainly because of the insufficient contrast between Si and SiO2. With this aim, we have recently developed a successful method for imaging Si nanocrystals in SiO2 matrices. This is done by using high-resolution electron microscopy in conjunction with conventional electron microscopy in dark field conditions. Then, by varying the time of annealing in a large time scale we have been able to track the nucleation, pure growth, and ripening stages of the nanocrystal population. The nucleation and pure growth stages are almost completed after a few minutes of annealing time at 1100°C in N2 and afterward the ensemble undergoes an asymptotic ripening process. In contrast, the PL intensity steadily increases and reaches saturation after 3-4 h of annealing at 1100°C. Forming gas postannealing considerably enhances the PL intensity but only for samples annealed previously in less time than that needed for PL saturation. The effects of forming gas are reversible and do not modify the spectral shape of the PL emission. The PL intensity shows at all times an inverse correlation with the amount of Pb paramagnetic centers at the Si-SiO2 nanocrystal-matrix interfaces, which have been measured by electron spin resonance. Consequently, the Pb centers or other centers associated with them are interfacial nonradiative channels for recombination and the emission yield largely depends on the interface passivation. We have correlated as well the average size of the nanocrystals with their optical band gap and PL emission energy. The band gap and emission energy shift to the blue as the nanocrystal size shrinks, in agreement with models based on quantum confinement. As a main result, we have found that the Stokes shift is independent of the average size of nanocrystals and has a constant value of 0.26±0.03 eV, which is almost twice the energy of the Si¿O vibration. This finding suggests that among the possible channels for radiative recombination, the dominant one for Si nanocrystals embedded in SiO2 is a fundamental transition spatially located at the Si¿SiO2 interface with the assistance of a local Si-O vibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present computational approaches as alternatives to a recent microwave cavity experiment by S. Sridhar and A. Kudrolli [Phys. Rev. Lett. 72, 2175 (1994)] on isospectral cavities built from triangles. A straightforward proof of isospectrality is given, based on the mode-matching method. Our results show that the experiment is accurate to 0.3% for the first 25 states. The level statistics resemble those of a Gaussian orthogonal ensemble when the integrable part of the spectrum is removed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proyecto de investigación realizado a partir de una estancia en el Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC), Argentina, entre febrero y abril del 2007. La simulación numérica de problemas de mezclas mediante el Particle Finite Element Method (PFEM) es el marco de estudio de una futura tesis doctoral. Éste es un método desarrollado conjuntamente por el CIMEC y el Centre Internacional de Mètodos Numèrics en l'Enginyeria (CIMNE-UPC), basado en la resolución de las ecuaciones de Navier-Stokes en formulación Lagrangiana. El mallador ha sido implementado y desarrollado por Dr. Nestor Calvo, investigador del CIMEC. El desarrollo del módulo de cálculo corresponde al trabajo de tesis de la beneficiaria. La correcta interacción entre ambas partes es fundamental para obtener resultados válidos. En esta memoria se explican los principales aspectos del mallador que fueron modificados (criterios de refinamiento geométrico) y los cambios introducidos en el módulo de cálculo (librería PETSc, algoritmo predictor-corrector) durante la estancia en el CIMEC. Por último, se muestran los resultados obtenidos en un problema de dos fluidos inmiscibles con transferencia de calor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.