25 resultados para Spatial information extraction

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work covers two aspects. First, it generally compares and summarizes the similarities and differences of state of the art feature detector and descriptor and second it presents a novel approach of detecting intestinal content (in particular bubbles) in capsule endoscopy images. Feature detectors and descriptors providing invariance to change of perspective, scale, signal-noise-ratio and lighting conditions are important and interesting topics in current research and the number of possible applications seems to be numberless. After analysing a selection of in the literature presented approaches, this work investigates in their suitability for applications information extraction in capsule endoscopy images. Eventually, a very good performing detector of intestinal content in capsule endoscopy images is presented. A accurate detection of intestinal content is crucial for all kinds of machine learning approaches and other analysis on capsule endoscopy studies because they occlude the field of view of the capsule camera and therefore those frames need to be excluded from analysis. As a so called “byproduct” of this investigation a graphical user interface supported Feature Analysis Tool is presented to execute and compare the discussed feature detectors and descriptor on arbitrary images, with configurable parameters and visualized their output. As well the presented bubble classifier is part of this tool and if a ground truth is available (or can also be generated using this tool) a detailed visualization of the validation result will be performed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aquesta memòria vol mostrar que la tecnologia XML és la millor alternativa per a afrontar el repte tecnològic existent en els sistemes d'extracció d'informació de les aplicacions de nova generació. Aquests sistemes, d'una banda, han de garantir la seva independència respecte dels esquemes de les bases de dades dels quals s'alimenten i, de l'altra, han de ser capaços de mostrar la informació en múltiples formats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a failure alert system and a methodology for content reuse in a new instructional design system called InterMediActor (IMA). IMA provides an environment for instructional content design, production and reuse, and for students’ evaluation based in content specification through a hierarchical structure of competences. The student assessment process and information extraction process for content reuse are explained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The standard data fusion methods may not be satisfactory to merge a high-resolution panchromatic image and a low-resolution multispectral image because they can distort the spectral characteristics of the multispectral data. The authors developed a technique, based on multiresolution wavelet decomposition, for the merging and data fusion of such images. The method presented consists of adding the wavelet coefficients of the high-resolution image to the multispectral (low-resolution) data. They have studied several possibilities concluding that the method which produces the best results consists in adding the high order coefficients of the wavelet transform of the panchromatic image to the intensity component (defined as L=(R+G+B)/3) of the multispectral image. The method is, thus, an improvement on standard intensity-hue-saturation (IHS or LHS) mergers. They used the ¿a trous¿ algorithm which allows the use of a dyadic wavelet to merge nondyadic data in a simple and efficient scheme. They used the method to merge SPOT and LANDSATTM images. The technique presented is clearly better than the IHS and LHS mergers in preserving both spectral and spatial information.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper examines competition in a spatial model of two-candidate elections, where one candidate enjoys a quality advantage over the other candidate. The candidates care about winning and also have policy preferences. There is two-dimensional private information. Candidate ideal points as well as their tradeoffs between policy preferences and winning are private information. The distribution of this two-dimensional type is common knowledge. The location of the median voter's ideal point is uncertain, with a distribution that is commonly known by both candidates. Pure strategy equilibria always exist in this model. We characterize the effects of increased uncertainty about the median voter, the effect of candidate policy preferences, and the effects of changes in the distribution of private information. We prove that the distribution of candidate policies approaches the mixed equilibrium of Aragones and Palfrey (2002a), when both candidates' weights on policy preferences go to zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite remote sensing imagery is used for forestry, conservation and environmental applications, but insufficient spatial resolution, and, in particular, unavailability of images at the precise timing required for a given application, often prevent achieving a fully operational stage. Airborne remote sensing has the advantage of custom-tuned sensors, resolution and timing, but its price prevents using it as a routine technique for the mentioned fields. Some Unmanned Aerial Vehicles might provide a “third way” solution as low-cost techniques for acquiring remotely sensed information, under close control of the end-user, albeit at the expense of lower quality instrumentation and instability. This report evaluates a light remote sensing system based on a remotely-controlled mini-UAV (ATMOS-3) equipped with a color infra-red camera (VEGCAM-1) designed and operated by CATUAV. We conducted a testing mission over a Mediterranean landscape dominated by an evergreen woodland of Aleppo pine (Pinus halepensis) and (Holm) oak (Quercus ilex) in the Montseny National Park (Catalonia, NE Spain). We took advantage of state-of-the-art ortho-rectified digital aerial imagery (acquired by the Institut Cartogràfic de Catalunya over the area during the previous year) and used it as quality reference. In particular, we paid attention to: 1) Operationality of flight and image acquisition according to a previously defined plan; 2) Radiometric and geometric quality of the images; and 3) Operational use of the images in the context of applications. We conclude that the system has achieved an operational stage regarding flight activities, although with meteorological limits set by wind speed and turbulence. Appropriate landing areas can be sometimes limiting also, but the system is able to land on small and relatively rough terrains such as patches of grassland or short matorral, and we have operated the UAV as far as 7 km from the control unit. Radiometric quality is sufficient for interactive analysis, but probably insufficient for automated processing. A forthcoming camera is supposed to greatly improve radiometric quality and consistency. Conventional GPS positioning through time synchronization provides coarse orientation of the images, with no roll information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two main alternative methods used to identify key sectors within the input-output approach, the Classical Multiplier method (CMM) and the Hypothetical Extraction method (HEM), are formally and empirically compared in this paper. Our findings indicate that the main distinction between the two approaches stems from the role of the internal effects. These internal effects are quantified under the CMM while under the HEM only external impacts are considered. In our comparison, we find, however that CMM backward measures are more influenced by within-block effects than the proposed forward indices under this approach. The conclusions of this comparison allow us to develop a hybrid proposal that combines these two existing approaches. This hybrid model has the advantage of making it possible to distinguish and disaggregate external effects from those that a purely internal. This proposal has also an additional interest in terms of policy implications. Indeed, the hybrid approach may provide useful information for the design of ''second best'' stimulus policies that aim at a more balanced perspective between overall economy-wide impacts and their sectoral distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel test of spatial independence of the distribution of crystals or phases in rocksbased on compositional statistics is introduced. It improves and generalizes the commonjoins-count statistics known from map analysis in geographic information systems.Assigning phases independently to objects in RD is modelled by a single-trial multinomialrandom function Z(x), where the probabilities of phases add to one and areexplicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistenciesof the tests based on the conventional joins{count statistics and their possiblycontradictory interpretations are avoided. In practical applications we assume that theprobabilities of phases do not depend on the location but are identical everywhere inthe domain of de nition. Thus, the model involves the sum of r independent identicalmultinomial distributed 1-trial random variables which is an r-trial multinomialdistributed random variable. The probabilities of the distribution of the r counts canbe considered as a composition in the Q-part simplex SQ. They span the so calledHardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This isa generalisation of the well-known Hardy-Weinberg law of genetics. If the assignmentof phases accounts for some kind of spatial dependence, then the r-trial probabilitiesdo not remain on H. This suggests the use of the Aitchison distance between observedprobabilities to H to test dependence. Moreover, when there is a spatial uctuation ofthe multinomial probabilities, the observed r-trial probabilities move on H. This shiftcan be used as to check for these uctuations. A practical procedure and an algorithmto perform the test have been developed. Some cases applied to simulated and realdata are presented.Key words: Spatial distribution of crystals in rocks, spatial distribution of phases,joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinbergmanifold, Aitchison geometry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many terrestrial and marine systems are experiencing accelerating decline due to the effects of global change. This situation has raised concern about the consequences of biodiversity losses for ecosystem function, ecosystem service provision, and human well-being. Coastal marine habitats are a main focus of attention because they harbour a high biological diversity, are among the most productive systems of the world and present high anthropogenic interaction levels. The accelerating degradation of many terrestrial and marine systems highlights the urgent need to evaluate the consequence of biodiversity loss. Because marine biodiversity is a dynamic entity and this study was interested global change impacts, this study focused on benthic biodiversity trends over large spatial and long temporal scales. The main aim of this project was to investigate the current extent of biodiversity of the high diverse benthic coralligenous community in the Mediterranean Sea, detect its changes, and predict its future changes over broad spatial and long temporal scales. These marine communities are characterized by structural species with low growth rates and long life spans; therefore they are considered particularly sensitive to disturbances. For this purpose, this project analyzed permanent photographic plots over time at four locations in the NW Mediterranean Sea. The spatial scale of this study provided information on the level of species similarity between these locations, thus offering a solid background on the amount of large scale variability in coralligenous communities; whereas the temporal scale was fundamental to determine the natural variability in order to discriminate between changes observed due to natural factors and those related to the impact of disturbances (e.g. mass mortality events related to positive thermal temperatures, extreme catastrophic events). This study directly addressed the challenging task of analyzing quantitative biodiversity data of these high diverse marine benthic communities. Overall, the scientific knowledge gained with this research project will improve our understanding in the function of marine ecosystems and their trajectories related to global change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acquiring lexical information is a complex problem, typically approached by relying on a number of contexts to contribute information for classification. One of the first issues to address in this domain is the determination of such contexts. The work presented here proposes the use of automatically obtained FORMAL role descriptors as features used to draw nouns from the same lexical semantic class together in an unsupervised clustering task. We have dealt with three lexical semantic classes (HUMAN, LOCATION and EVENT) in English. The results obtained show that it is possible to discriminate between elements from different lexical semantic classes using only FORMAL role information, hence validating our initial hypothesis. Also, iterating our method accurately accounts for fine-grained distinctions within lexical classes, namely distinctions involving ambiguous expressions. Moreover, a filtering and bootstrapping strategy employed in extracting FORMAL role descriptors proved to minimize effects of sparse data and noise in our task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work briefly analyses the difficulties to adopt the Semantic Web, and in particular proposes systems to know the present level of migration to the different technologies that make up the Semantic Web. It focuses on the presentation and description of two tools, DigiDocSpider and DigiDocMetaEdit, designed with the aim of verifYing, evaluating, and promoting its implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monetary policy is conducted in an environment of uncertainty. This paper sets upa model where the central bank uses real-time data from the bond market togetherwith standard macroeconomic indicators to estimate the current state of theeconomy more efficiently, while taking into account that its own actions influencewhat it observes. The timeliness of bond market data allows for quicker responsesof monetary policy to disturbances compared to the case when the central bankhas to rely solely on collected aggregate data. The information content of theterm structure creates a link between the bond market and the macroeconomythat is novel to the literature. To quantify the importance of the bond market asa source of information, the model is estimated on data for the United Statesand Australia using Bayesian methods. The empirical exercise suggests that thereis some information in the US term structure that helps the Federal Reserve toidentify shocks to the economy on a timely basis. Australian bond prices seemto be less informative than their US counterparts, perhaps because Australia is arelatively small and open economy.