32 resultados para Sound recognition
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
"Es tracta d'un projecte dividit en dues parts independents però complementàries, realitzades per autors diferents. Aquest document conté originàriament altre material i/o programari només consultable a la Biblioteca de Ciència i Tecnologia"
Resumo:
Report for the scientific sojourn at the Swiss Federal Institute of Technology Zurich, Switzerland, between September and December 2007. In order to make robots useful assistants for our everyday life, the ability to learn and recognize objects is of essential importance. However, object recognition in real scenes is one of the most challenging problems in computer vision, as it is necessary to deal with difficulties. Furthermore, in mobile robotics a new challenge is added to the list: computational complexity. In a dynamic world, information about the objects in the scene can become obsolete before it is ready to be used if the detection algorithm is not fast enough. Two recent object recognition techniques have achieved notable results: the constellation approach proposed by Lowe and the bag of words approach proposed by Nistér and Stewénius. The Lowe constellation approach is the one currently being used in the robot localization project of the COGNIRON project. This report is divided in two main sections. The first section is devoted to briefly review the currently used object recognition system, the Lowe approach, and bring to light the drawbacks found for object recognition in the context of indoor mobile robot navigation. Additionally the proposed improvements for the algorithm are described. In the second section the alternative bag of words method is reviewed, as well as several experiments conducted to evaluate its performance with our own object databases. Furthermore, some modifications to the original algorithm to make it suitable for object detection in unsegmented images are proposed.
Resumo:
Report for the scientific sojourn at the Stanford University from January until June 2007. Music is well known for affecting human emotional states, yet the relationship between specific musical parameters and emotional responses is still not clear. With the advent of new human-computer interaction (HCI) technologies, it is now possible to derive emotion-related information from physiological data and use it as an input to interactive music systems. Providing such implicit musical HCI will be highly relevant for a number of applications including music therapy, diagnosis, nteractive gaming, and physiologically-based musical instruments. A key question in such physiology-based compositions is how sound synthesis parameters can be mapped to emotional states of valence and arousal. We used both verbal and heart rate responses to evaluate the affective power of five musical parameters. Our results show that a significant correlation exists between heart rate and the subjective evaluation of well-defined musical parameters. Brightness and loudness showed to be arousing parameters on subjective scale while harmonicity and even partial attenuation factor resulted in heart rate changes typically associated to valence. This demonstrates that a rational approach to designing emotion-driven music systems for our public installations and music therapy applications is possible.
Resumo:
In the PhD thesis “Sound Texture Modeling” we deal with statistical modelling or textural sounds like water, wind, rain, etc. For synthesis and classification. Our initial model is based on a wavelet tree signal decomposition and the modeling of the resulting sequence by means of a parametric probabilistic model, that can be situated within the family of models trainable via expectation maximization (hidden Markov tree model ). Our model is able to capture key characteristics of the source textures (water, rain, fire, applause, crowd chatter ), and faithfully reproduces some of the sound classes. In terms of a more general taxonomy of natural events proposed by Graver, we worked on models for natural event classification and segmentation. While the event labels comprise physical interactions between materials that do not have textural propierties in their enterity, those segmentation models can help in identifying textural portions of an audio recording useful for analysis and resynthesis. Following our work on concatenative synthesis of musical instruments, we have developed a pattern-based synthesis system, that allows to sonically explore a database of units by means of their representation in a perceptual feature space. Concatenative syntyhesis with “molecules” built from sparse atomic representations also allows capture low-level correlations in perceptual audio features, while facilitating the manipulation of textural sounds based on their physical and perceptual properties. We have approached the problem of sound texture modelling for synthesis from different directions, namely a low-level signal-theoretic point of view through a wavelet transform, and a more high-level point of view driven by perceptual audio features in the concatenative synthesis setting. The developed framework provides unified approach to the high-quality resynthesis of natural texture sounds. Our research is embedded within the Metaverse 1 European project (2008-2011), where our models are contributting as low level building blocks within a semi-automated soundscape generation system.
Resumo:
The automatic interpretation of conventional traffic signs is very complex and time consuming. The paper concerns an automatic warning system for driving assistance. It does not interpret the standard traffic signs on the roadside; the proposal is to incorporate into the existing signs another type of traffic sign whose information will be more easily interpreted by a processor. The type of information to be added is profuse and therefore the most important object is the robustness of the system. The basic proposal of this new philosophy is that the co-pilot system for automatic warning and driving assistance can interpret with greater ease the information contained in the new sign, whilst the human driver only has to interpret the "classic" sign. One of the codings that has been tested with good results and which seems to us easy to implement is that which has a rectangular shape and 4 vertical bars of different colours. The size of these signs is equivalent to the size of the conventional signs (approximately 0.4 m2). The colour information from the sign can be easily interpreted by the proposed processor and the interpretation is much easier and quicker than the information shown by the pictographs of the classic signs
Resumo:
This paper describes a systematic research about free software solutions and techniques for art imagery computer recognition problem.
Resumo:
The space and time discretization inherent to all FDTD schemesintroduce non-physical dispersion errors, i.e. deviations ofthe speed of sound from the theoretical value predicted bythe governing Euler differential equations. A generalmethodologyfor computing this dispersion error via straightforwardnumerical simulations of the FDTD schemes is presented.The method is shown to provide remarkable accuraciesof the order of 1/1000 in a wide variety of twodimensionalfinite difference schemes.
Resumo:
Background: Single Nucleotide Polymorphisms, among other type of sequence variants, constitute key elements in genetic epidemiology and pharmacogenomics. While sequence data about genetic variation is found at databases such as dbSNP, clues about the functional and phenotypic consequences of the variations are generally found in biomedical literature. The identification of the relevant documents and the extraction of the information from them are hampered by the large size of literature databases and the lack of widely accepted standard notation for biomedical entities. Thus, automatic systems for the identification of citations of allelic variants of genes in biomedical texts are required. Results: Our group has previously reported the development of OSIRIS, a system aimed at the retrieval of literature about allelic variants of genes http://ibi.imim.es/osirisform.html. Here we describe the development of a new version of OSIRIS (OSIRISv1.2, http://ibi.imim.es/OSIRISv1.2.html webcite) which incorporates a new entity recognition module and is built on top of a local mirror of the MEDLINE collection and HgenetInfoDB: a database that collects data on human gene sequence variations. The new entity recognition module is based on a pattern-based search algorithm for the identification of variation terms in the texts and their mapping to dbSNP identifiers. The performance of OSIRISv1.2 was evaluated on a manually annotated corpus, resulting in 99% precision, 82% recall, and an F-score of 0.89. As an example, the application of the system for collecting literature citations for the allelic variants of genes related to the diseases intracranial aneurysm and breast cancer is presented. Conclusion: OSIRISv1.2 can be used to link literature references to dbSNP database entries with high accuracy, and therefore is suitable for collecting current knowledge on gene sequence variations and supporting the functional annotation of variation databases. The application of OSIRISv1.2 in combination with controlled vocabularies like MeSH provides a way to identify associations of biomedical interest, such as those that relate SNPs with diseases.
Resumo:
Plan recognition is the problem of inferring the goals and plans of an agent from partial observations of her behavior. Recently, it has been shown that the problem can be formulated and solved usingplanners, reducing plan recognition to plan generation.In this work, we extend this model-basedapproach to plan recognition to the POMDP setting, where actions are stochastic and states are partially observable. The task is to infer a probability distribution over the possible goals of an agent whose behavior results from a POMDP model. The POMDP model is shared between agent and observer except for the true goal of the agent that is hidden to the observer. The observations are action sequences O that may contain gaps as some or even most of the actions done by the agent may not be observed. We show that the posterior goal distribution P(GjO) can be computed from the value function VG(b) over beliefs b generated by the POMDPplanner for each possible goal G. Some extensionsof the basic framework are discussed, and a numberof experiments are reported.
Resumo:
Having lived through a bloody civil war in the 1930s followed by four decades of General Franco’s dictatorship, the Spanish state carried out a transition to a democratic system at the end of the 1970s. The 1978 Constitution was the legal outcome of this transition process. Among other things, it established a territorial model – the so-called “Estado de las Autonomías” (State of Autonomous Communities) – which was designed to satisfy the historical demands for recognition and self-government of, above all, the citizens and institutions of Catalonia and the Basque Country .In recent years support for independence has increased in Catalonia. Different indicators show that pro-independence demands are endorsed by a majority of its citizens, as well as by most of the political parties and organizations that represent its civil society. This is a new phenomenon. Those in favour of independence had been in the minority throughout the 20th century. Nowadays, however, demands of a pro-autonomy and pro-federalist nature, which until recently had been dominant, have gradually lost public support in favour of demands for self-determination and secession. This paper analyses the massive increase in support for secession in Catalonia during the early years of the 21st century. After describing the different theories of secession in plurinational liberal democracies (section 1), we analyse Catalonia’s political evolution over the past decade focusing on the shortcomings with regard to constitutional recognition and accommodation displayed by the Spanish political system. The latter have been exacerbated by the reform process of Catalonia’s Statute of Autonomy (2006) and the subsequent judgement of Spain’s Constitutional Court regarding the aforementioned Statute (2010) (section 2). Finally, we present our conclusions by linking the Catalan case with theories of secession applied to plurinational contexts
Resumo:
Several features that can be extracted from digital images of the sky and that can be useful for cloud-type classification of such images are presented. Some features are statistical measurements of image texture, some are based on the Fourier transform of the image and, finally, others are computed from the image where cloudy pixels are distinguished from clear-sky pixels. The use of the most suitable features in an automatic classification algorithm is also shown and discussed. Both the features and the classifier are developed over images taken by two different camera devices, namely, a total sky imager (TSI) and a whole sky imager (WSC), which are placed in two different areas of the world (Toowoomba, Australia; and Girona, Spain, respectively). The performance of the classifier is assessed by comparing its image classification with an a priori classification carried out by visual inspection of more than 200 images from each camera. The index of agreement is 76% when five different sky conditions are considered: clear, low cumuliform clouds, stratiform clouds (overcast), cirriform clouds, and mottled clouds (altocumulus, cirrocumulus). Discussion on the future directions of this research is also presented, regarding both the use of other features and the use of other classification techniques
Resumo:
One of the most important problems in optical pattern recognition by correlation is the appearance of sidelobes in the correlation plane, which causes false alarms. We present a method that eliminate sidelobes of up to a given height if certain conditions are satisfied. The method can be applied to any generalized synthetic discriminant function filter and is capable of rejecting lateral peaks that are even higher than the central correlation. Satisfactory results were obtained in both computer simulations and optical implementation.
Resumo:
Excitation-continuous music instrument control patterns are often not explicitly represented in current sound synthesis techniques when applied to automatic performance. Both physical model-based and sample-based synthesis paradigmswould benefit from a flexible and accurate instrument control model, enabling the improvement of naturalness and realism. Wepresent a framework for modeling bowing control parameters inviolin performance. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing control parameter signals.We model the temporal contour of bow velocity, bow pressing force, and bow-bridge distance as sequences of short Bézier cubic curve segments. Considering different articulations, dynamics, and performance contexts, a number of note classes are defined. Contours of bowing parameters in a performance database are analyzed at note-level by following a predefined grammar that dictates characteristics of curve segment sequences for each of the classes in consideration. As a result, contour analysis of bowing parameters of each note yields an optimal representation vector that is sufficient for reconstructing original contours with significant fidelity. From the resulting representation vectors, we construct a statistical model based on Gaussian mixtures suitable for both the analysis and synthesis of bowing parameter contours. By using the estimated models, synthetic contours can be generated through a bow planning algorithm able to reproduce possible constraints caused by the finite length of the bow. Rendered contours are successfully used in two preliminary synthesis frameworks: digital waveguide-based bowed stringphysical modeling and sample-based spectral-domain synthesis.
Resumo:
This paper presents a framework in which samples of bowing gesture parameters are retrieved and concatenated from a database of violin performances by attending to an annotated input score. Resulting bowing parameter signals are then used to synthesize sound by means of both a digital waveguide violin physical model, and an spectral-domainadditive synthesizer.