2 resultados para Skewness Grubbs model

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a model of the Stokes emission vector from the ocean surface. The ocean surface is described as an ensemble of facets with Cox and Munk's (1954) Gram-Charlier slope distribution. The study discusses the impact of different up-wind and cross-wind rms slopes, skewness, peakedness, foam cover models and atmospheric effects on the azimuthal variation of the Stokes vector, as well as the limitations of the model. Simulation results compare favorably, both in mean value and azimuthal dependence, with SSM/I data at 53° incidence angle and with JPL's WINDRAD measurements at incidence angles from 30° to 65°, and at wind speeds from 2.5 to 11 m/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the independent effect of skewness and kurtosis on the robustness of the linear mixed model (LMM), with the Kenward-Roger (KR) procedure, when group distributions are different, sample sizes are small, and sphericity cannot be assumed. Methods: A Monte Carlo simulation study considering a split-plot design involving three groups and four repeated measures was performed. Results: The results showed that when group distributions are different, the effect of skewness on KR robustness is greater than that of kurtosis for the corresponding values. Furthermore, the pairings of skewness and kurtosis with group size were found to be relevant variables when applying this procedure. Conclusions: With sample sizes of 45 and 60, KR is a suitable option for analyzing data when the distributions are: (a) mesokurtic and not highly or extremely skewed, and (b) symmetric with different degrees of kurtosis. With total sample sizes of 30, it is adequate when group sizes are equal and the distributions are: (a) mesokurtic and slightly or moderately skewed, and sphericity is assumed; and (b) symmetric with a moderate or high/extreme violation of kurtosis. Alternative analyses should be considered when the distributions are highly or extremely skewed and samples sizes are small.