3 resultados para Single-strand conformation polymorphism
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: The human chromosome 8p23.1 region contains a 3.8–4.5 Mb segment which can be found in different orientations (defined as genomic inversion) among individuals. The identification of single nucleotide polymorphisms (SNPs) tightly linked to the genomic orientation of a given region should be useful to indirectly evaluate the genotypes of large genomic orientations in the individuals. Results: We have identified 16 SNPs, which are in linkage disequilibrium (LD) with the 8p23.1 inversion as detected by fluorescent in situ hybridization (FISH). The variability of the 8p23.1 orientation in 150 HapMap samples was predicted using this set of SNPs and was verified by FISH in a subset of samples. Four genes (NEIL2, MSRA, CTSB and BLK) were found differentially expressed (p<0.0005) according to the orientation of the 8p23.1 region. Finally, we have found variable levels of mosaicism for the orientation of the 8p23.1 as determined by FISH. Conclusion: By means of dense SNP genotyping of the region, haplotype-based computational analyses and FISH experiments we could infer and verify the orientation status of alleles in the 8p23.1 region by detecting two short haplotype stretches at both ends of the inverted region, which are likely the relic of the chromosome in which the original inversion occurred. Moreover, an impact of 8p23.1 inversion on gene expression levels cannot be ruled out, since four genes from this region have statistically significant different expression levels depending on the inversion status. FISH results in lymphoblastoid cell lines suggest the presence of mosaicism regarding the 8p23.1 inversion.
Resumo:
MicroRNAs (miRNA) are recognized posttranscriptional gene repressors involved in the control of almost every biological process. Allelic variants in these regions may be an important source of phenotypic diversity and contribute to disease susceptibility. We analyzed the genomic organization of 325 human miRNAs (release 7.1, miRBase) to construct a panel of 768 single-nucleotide polymorphisms (SNPs) covering approximately 1 Mb of genomic DNA, including 131 isolated miRNAs (40%) and 194 miRNAs arranged in 48 miRNA clusters, as well as their 5-kb flanking regions. Of these miRNAs, 37% were inside known protein-coding genes, which were significantly associated with biological functions regarding neurological, psychological or nutritional disorders. SNP coverage analysis revealed a lower SNP density in miRNAs compared with the average of the genome, with only 24 SNPs located in the 325 miRNAs studied. Further genotyping of 340 unrelated Spanish individuals showed that more than half of the SNPs in miRNAs were either rare or monomorphic, in agreement with the reported selective constraint on human miRNAs. A comparison of the minor allele frequencies between Spanish and HapMap population samples confirmed the applicability of this SNP panel to the study of complex disorders among the Spanish population, and revealed two miRNA regions, hsa-mir-26a-2 in the CTDSP2 gene and hsa-mir-128-1 in the R3HDM1 gene, showing geographical allelic frequency variation among the four HapMap populations, probably because of differences in natural selection. The designed miRNA SNP panel could help to identify still hidden links between miRNAs and human disease.
Resumo:
Background: In insects, like in most invertebrates, olfaction is the principal sensory modality, which provides animals with essential information for survival and reproduction. Odorant receptors are involved in this response, mediating interactions between an individual and its environment, as well as between individuals of the same or different species. The adaptive importance of odorant receptors renders them good candidates for having their variation shaped by natural selection. Methodology/Principal Findings: We analyzed nucleotide variation in a subset of eight Or genes located on the 3L chromosomal arm of Drosophila melanogaster in a derived population of this species and also in a population of Drosophila pseudoobscura. Some heterogeneity in the silent polymorphism to divergence ratio was detected in the D. melanogaster/D. simulans comparison, with a single gene (Or67b) contributing ~37% to the test statistic. However, no other signals of a very recent selective event were detected at this gene. In contrast, at the speciation timescale, the MK test uncovered the footprint of positive selection driving the evolution of two of the encoded proteins in both D. melanogaster ¿OR65c and OR67a ¿and D. pseudoobscura ¿OR65b1 and OR67c. Conclusions: The powerful polymorphism/divergence approach provided evidence for adaptive evolution at a rather high proportion of the Or genes studied after relatively recent speciation events. It did not provide, however, clear evidence for very recent selective events in either D. melanogaster or D. pseudoobscura.