13 resultados para Silica gel surface coated with titanium(IV) oxide
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We investigated the influence of a hydrogenated disordered carbon (a-C:H) layer on the nucleation of diamond. Substrates c-Si<100>, SiAlON, and highly oriented pyrolytic graphite {0001} were used in this study. The substrate surfaces were characterized with Auger electron spectroscopy (AES) while diamond growth was followed with Raman spectroscopy and scanning electron microscopy (SEM). It was found that on silicon and SiAlON substrates the presence of the a-C:H layer enabled diamond to grow readily without any polishing treatment. Moreover, more continuous diamond films could be grown when the substrate was polished with diamond powder prior to the deposition of the a-C:H layer. This important result suggests that the nucleation of diamond occurs readily on disordered carbon surfaces, and that the formation of this type of layer is indeed one step in the diamond nucleation mechanism. Altogether, the data refute the argument that silicon defects play a direct role in the nucleation process. Auger spectra revealed that for short deposition times and untreated silicon surfaces, the deposited layer corresponds to an amorphous carbon layer. In these cases, the subsequent diamond nucleation was found to be limited. However, when the diamond nucleation density was found to be high; i.e., after lengthy deposits of a¿C:H or after diamond polishing, the Auger spectra suggested diamondlike carbon layers.
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
Given a non-positively curved 2-complex with a circle-valued Morse function satisfying some extra combinatorial conditions, we describe how to locally isometrically embed this in a larger non- positively curved 2-complex with free-by-cyclic fundamental group. This embedding procedure is used to produce examples of CAT(0) free-by-cyclic groups that contain closed hyperbolic surface subgroups with polynomial distortion of arbitrary degree. We also produce examples of CAT(0) hyperbolic free-by-cyclic groups that contain closed hyperbolic surface subgroups that are exponentially distorted.
Resumo:
La separació d’enantiòmers (isòmers òptics) és molt important en molts diversos camps, com les síntesis quirals, biologia, i en el camp de la farmacologia especialment. És per això, que es fa necessari de disposar de tècniques i mètodes analítics ràpids, fiables i sensibles per a la separació d’enantiòmers. La present tesi s’emmarca en el camp de la separació d’enantiòmers, concretament en la preparació de fases estacionàries quirals per al seu ús en cromatografia liquida. En aquest sentit, s’ha desenvolupat la síntesi i caracterització de molècules polimèriques quirals derivades de l’aminoàcid L-prolina que incorporades en matrius de gel de sílice poden constituïr columnes quirals per a la separació d’enantiòmers per cromatografia liquida. S’han estudiat les característiques enantioselectives d’aquests nous materials en la separació de molècules quirals, trobant-se ésser satisfactòriament enantioselectius. L’interès que suscita l’obtenció d’enantiòmers a gran escala fa que la recerca s’orienti a la recerca de materials amb elevada capacitat de càrrega, és a dir, que puguin donar lloc a la separació d’elevades quantitats d’enantiòmers. Amb aquesta finalitat s’han dut a terme assaigs de capacitat de càrrega, que han posat de manifest la possible aplicació d’aquests materials a la separació preparativa d’enantiòmers. També s’ha parat especial atenció a l’estudi de les característiques de la matriu de gel de sílice, assajant-se altres materials de sílice més porosos i que permeten així treballar amb fluxos més elevats tot reduint-ne el temps d’anàlisi i els costos associats a la separació preparativa d’enantiòmers. L'estudi conformacional d'aquests nous selectors també ha estat contemplat per tal d'explicar l'enantioselectivitat específica que s'observa en certs dissolvents orgànics en els qual es duu a terme la separació dels enantiòmers.
Resumo:
A microstructural analysis of silicon-on-insulator samples obtained by high dose oxygen ion implantation was performed by Raman scattering. The samples analyzed were obtained under different conditions thus leading to different concentrations of defects in the top Si layer. The samples were implanted with the surface covered with SiO2 capping layers of different thicknesses. The spectra measured from the as-implanted samples were fitted to a correlation length model taking into account the possible presence of stress effects in the spectra. This allowed quantification of both disorder effects, which are determined by structural defects, and residual stress in the top Si layer before annealing. These data were correlated to the density of dislocations remaining in the layer after annealing. The analysis performed corroborates the existence of two mechanisms that generate defects in the top Si layer that are related to surface conditions during implantation and the proximity of the top Si/buried oxide layer interface to the surface before annealing.
Resumo:
A surface dielectric function of a semi-infinite plane-bounded metal is defined in the spirit of the plasmon-pole dielectric function of the bulk. It is modeled in such a way that the surface-plasmon dispersion relation is recovered for small momentum transfer. This function is employed to compute the image potential at all distances outside the surface. Interaction with bulk modes is neglected for simplicity and clarity. The interaction of a massive point charge with a metal surface is also considered in the context of a boson model for surface-plasmon excitation. We present a new definition of the image potential for this case.
Resumo:
This article summarizes the basic principles of photoelectron spectroscopy for surface analysis, with examples of applications in material science that illustrate the capabilities of the related techniques.
Resumo:
This article describes a photocatalytic nanostructured anatase coating deposited by cold gas spray (CGS)supported on titanium sub-oxide (TiO22x) coatings obtained by atmospheric plasma spray (APS) onto stainless steel cylinders. The photocatalytic coating was homogeneous and preserved the composition and nanostructure of the starting powder. The inner titanium sub-oxide coating favored the deposition of anatase particles in the solid state. Agglomerated nano-TiO2 particles fragmented when impacting onto the hard surface of the APS TiO22x bond coat. The rough surface provided by APS provided an ideal scenario for entrapping the nanostructured particles, which may be adhered onto the bond coat due to chemical bonding; a possible bonding mechanism is described. Photocatalytic experiments showed that CGS nano-TiO2 coating was active for photodegrading phenol and formic acid under aqueous conditions. The results were similar to the performance obtained by competitor technologies and materials such as dip-coating P25 photocatalysts. Disparity in the final performance of the photoactive materials may have been caused by differences in grain size and the crystalline composition of titanium dioxide.
Resumo:
We investigated convection caused by surface cooling and mixing attributable to wind shear stress and their roles as agents for the transport of phytoplankton cells in the water column by carrying out two daily surveys during the stratified period of the Sau reservoir. Green algae, diatoms, and cryptophyceae were the dominant phytoplankton communities during the surveys carried out in the middle (July) and end (September) of the stratified period. We show that a system with a linear stratification and that is subject to weak surface forcing, with weak winds , < 4 m S (-1) and low energy dissipation rate values of the order of 1028 m2 s23 or lower, enables the formation of thin phytoplankton layers. These layers quickly disappear when water parcels mix because there is a medium external forcing (convection) induced by the night surface cooling, which is characterized by energy dissipation rates on the order of , 5x10(-8)m2s(-3). During both surveys the wind generated internal waves during the entire diurnal cycle. During the day, and because of the weak winds, phytoplankton layers rise in the water column up to a depth determined by both solar heating and internal waves. In contrast, during the night phytoplankton mixes down to a depth determined by both convection and internal waves. These internal waves, together with the wind-driven current generated at the surface, seem to be the agents responsible for the horizontal transport of phytoplankton across the reservoir.
Resumo:
Flushing is an important maintenance task that removes accumulated particles in microirrigation laterals that can help to reduce clogging problems. The effect of three dripline flushing frequency treatments (no flushing, one flushing at the end of each irrigation period, and a monthly flushing during the irrigation period) was studied in surface and subsurface drip irrigation systems that operated using a wastewater treatment plant effluent for three irrigation periods of 540 h each. The irrigation systems had two different emitters, one pressure compensating and the other not, both molded and welded onto the interior dripline wall, placed in laterals 87 meters long. Dripline flow of the pressure compensating emitter increased 8% over time, while in the nonpressure compensating emitter, dripline flow increased 25% in the surface driplines and decreased 3% in the subsurface driplines by the emitter clogging. Emitter clogging was affected primarily by the interactions between emitter location, emitter type, and flushing frequency treatment. The number of completely clogged emitters was affected by the interaction between irrigation system and emitter type. There was an average of 3.7% less totally clogged emitters in flushed surface driplines with the pressurecompensating emitter as compared to flushed subsurface laterals with the nonpressure compensating emitter
Resumo:
High-dose carbon-ion-implanted Si samples have been analyzed by infrared spectroscopy, Raman scattering, and x-ray photoelectron spectroscopy (XPS) correlated with transmission electron microscopy. Samples were implanted at room temperature and 500°C with doses between 1017 and 1018 C+/cm2. Some of the samples were implanted at room temperature with the surface covered by a capping oxide layer. Implanting at room temperature leads to the formation of a surface carbon-rich amorphous layer, in addition to the buried implanted layer. The dependence of this layer on the capping oxide suggests this layer to be determined by carbon migration toward the surface, rather than surface contamination. Implanting at 500°C, no carbon-rich surface layer is observed and the SiC buried layer is formed by crystalline ßSiC precipitates aligned with the Si matrix. The concentration of SiC in this region as measured by XPS is higher than for the room-temperature implantation.