3 resultados para Serum-free medium
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The availability of induced pluripotent stem cells (iPSCs)has created extraordinary opportunities for modeling andperhaps treating human disease. However, all reprogrammingprotocols used to date involve the use of products of animal origin. Here, we set out to develop a protocol to generate and maintain human iPSC that would be entirelydevoid of xenobiotics. We first developed a xeno-free cellculture media that supported the long-term propagation of human embryonic stem cells (hESCs) to a similar extent as conventional media containing animal origin products or commercially available xeno-free medium. We also derivedprimary cultures of human dermal fibroblasts under strictxeno-free conditions (XF-HFF), and we show that they can be used as both the cell source for iPSC generation as well as autologous feeder cells to support their growth. We also replaced other reagents of animal origin trypsin, gelatin, matrigel) with their recombinant equivalents. Finally, we used vesicular stomatitis virus G-pseudotyped retroviral particles expressing a polycistronic construct encoding Oct4, Sox2, Klf4, and GFP to reprogram XF-HFF cells under xeno-free conditions. A total of 10 xeno-free humaniPSC lines were generated, which could be continuously passaged in xeno-free conditions and aintained characteristics indistinguishable from hESCs, including colonymorphology and growth behavior, expression of pluripotency-associated markers, and pluripotent differentiationability in vitro and in teratoma assays. Overall, the resultspresented here demonstrate that human iPSCs can be generatedand maintained under strict xeno-free conditions and provide a path to good manufacturing practice (GMP) applicability that should facilitate the clinical translation of iPSC-based therapies.
Resumo:
In cork oak (Quercus suber L.), recurrent embryogenesis is produced in vitro through autoembryony without exogenous plant growth regulators (PGRs); secondary embryos appear on the embryo axis but seldom on cotyledons. Focusing mainly on the histological origin of neoformations, we investigated the influence of the embryo axis and exogenous PGRs on the embryogenic potential of somatic embryo cotyledons. Isolated cotyledons of somatic embryos became necrotic when cultured on PGR-free medium but gave secondary embryos when cultured on media containing benzyladenine and naphthaleneacetic acid. Cotyledons of cork oak somatic embryos are competent to give embryogenic responses. Isolated cotyledons without a petiole showed a lower percentage of embryogenic response than did those with a petiole. In petioles, somatic embryos arose from inner parenchyma tissues following a multicellular budding pattern. Joined to the embryo axis, cotyledons did not show morphogenic responses when cultured on PGR-free medium but revealed budlike and phylloid formations when cultured on medium with PGRs. The different morphogenic behavior displayed by somatic cotyledons indicates an influence of the embryo axis and indicates a relationship between organogenic and embryogenic regeneration pathways
Resumo:
Epidermal growth factor (EGF) and insulin induced similar effects in isolated rat adipocytes. To determine whether EGF and insulin produced similar effects through the same mechanisms, we focused on lipolysis. Insulin inhibited the lipolysis stimulated by isoproterenol, glucagon (either alone or in combination with adenosine deaminase), adenosine deaminase itself, or forskolin. In contrast, EGF did not inhibit the lipolysis stimulated by forskolin or by hormones when the cells were also incubated with adenosine deaminase. The effect of insulin, but not that of EGF, on isoproterenol-stimulated lipolysis disappeared when adipocytes were incubated with 1 microM wortmannin. These results indicate that EGF and insulin affected lipolysis through different mechanisms. We observed that EGF, but not insulin, increased cytosolic Ca2+. The effect of EGF, but not that of insulin, disappeared when the cells were incubated in a Ca2+-free medium. We suggest that EGF, but not insulin, mediate its antilipolytic effect through a Ca2+-dependent mechanism which, however, do not involve Ca2+-activated protein kinase C isoforms. This is based on the following: 1) phorbol 12-myristate 13-acetate affected lipolysis in an opposite way to that of EGF; and 2) the protein kinase C inhibitor bisindolylmaleimide GF 109203X did not affect the antilipolytic action of EGF. Our results indicate that the antilipolytic effect of EGF resembles more that of vasopressin than that of insulin.