54 resultados para Semi-supervised clustering
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
Memòria elaborada a partir d’una estada al projecte Proteus de la New York University entre abril i juny del 2007. Les tècniques de clustering poden ajudar a reduir la supervisió en processos d’obtenció de patrons per a Extracció d’Informació. Tanmateix, és necessari disposar d’algorismes adequats a documents, i aquests algorismes requereixen mesures adequades de similitud entre patrons. Els kernels poden oferir una solució a aquests problemes, però l’aprenentatge no supervisat requereix d’estrat`egies m´es astutes que l’aprenentatge supervisat per a incorporar major quantitat d’informació. En aquesta memòria, fruit de la meva estada de mes d’Abril al de Juny de 2007 al projecte. Proteus de la New York University, es proposen i avaluen diversos kernels sobre patrons. Ini- cialment s’estudien kernels amb una família de patrons restringits, i a continuació s’apliquen kernels ja usats en tasques supervisades d’Extracció d’Informació. Degut a la degradació del rendiment que experimenta el clustering a l’afegir informació irrellevant, els kernels se simpli- fiquen i es busquen estratègies per a incorporar-hi semàntica de forma selectiva. Finalment, s’estudia quin efecte té aplicar clustering sobre el coneixement semàntic com a pas previ al clustering de patrons. Les diverses estratègies s’avaluen en tasques de clustering de documents i patrons usant dades reals.
Resumo:
Creative industries tend to concentrate mainly around large- and medium-sized cities, forming creative local production systems. The text analyses the forces behind clustering of creative industries to provide the first empirical explanation of the determinants of creative employment clustering following a multidisciplinary approach based on cultural and creative economics, evolutionary geography and urban economics. A comparative analysis has been performed for Italy and Spain. The results show different patterns of creative employment clustering in both countries. The small role of historical and cultural endowments, the size of the place, the average size of creative industries, the productive diversity and the concentration of human capital and creative class have been found as common factors of clustering in both countries.
Resumo:
Concerns on the clustering of retail industries and professional services in main streets had traditionally been the public interest rationale for supporting distance regulations. Although many geographic restrictions have been suppressed, deregulation has hinged mostly upon the theory results on the natural tendency of outlets to differentiate spatially. Empirical evidence has so far offered mixed results. Using the case of deregulation of pharmacy establishment in a region of Spain, we empirically show how pharmacy locations scatter, and that there is not rationale for distance regulation apart from the underlying private interest of very few incumbents.
Resumo:
We consider linear optimization over a nonempty convex semi-algebraic feasible region F. Semidefinite programming is an example. If F is compact, then for almost every linear objective there is a unique optimal solution, lying on a unique \active" manifold, around which F is \partly smooth", and the second-order sufficient conditions hold. Perturbing the objective results in smooth variation of the optimal solution. The active manifold consists, locally, of these perturbed optimal solutions; it is independent of the representation of F, and is eventually identified by a variety of iterative algorithms such as proximal and projected gradient schemes. These results extend to unbounded sets F.
Resumo:
Els canvi recents en els plans d’estudis de la UPC i la UOC tenen en compte el nou espai europeu d’educació superior (EEES). Una de les conseqüències directes a aquests canvis es la necessitat d'aprofitar i optimitzar el temps dedicat a les activitats d'aprenentatge que requereixen la participació activa de l’estudiant i que es realitzen de manera continuada durant el semestre. A més, I'EEES destaca la importància de les pràctiques, les relacions interpersonals i la capacitat per treballar en equip, suggerint la reducció de classes magistrals i l’augment d’activitats que fomentin tant el treball personal de l’estudiant com el cooperatiu. En l’àmbit de la docència informàtica d’assignatures de bases de dades el problema és especialment complex degut a que els enunciats de les proves no acostumen a tenir una solució única. Nosaltres hem desenvolupat una eina anomenada LEARN-SQL, l’objectiu de la qual és corregir automàticament qualsevol tipus de sentència SQL (consultes, actualitzacions, procediments emmagatzemats, disparadors, etc.) i discernir si la resposta aportada per l’estudiant és o no és correcta amb independència de la solució concreta que aquest proposi. D’aquesta manera potenciem l’autoaprenentatge i l’autoavaluació, fent possible la semi-presencialitat supervisada i facilitant l’aprenentatge individualitzat segons les necessitats de cada estudiant. Addicionalment, aquesta eina ajuda als professors a dissenyar les proves d’avaluació, permetent també la opció de revisar qualitativament les solucions aportades pels estudiants. Per últim, el sistema proporciona ajuda als estudiants per a que aprenguin dels seus propis errors, proporcionant retroalimentació de qualitat.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In this paper, we present a stochastic model for disability insurance contracts. The model is based on a discrete time non-homogeneous semi-Markov process (DTNHSMP) to which the backward recurrence time process is introduced. This permits a more exhaustive study of disability evolution and a more efficient approach to the duration problem. The use of semi-Markov reward processes facilitates the possibility of deriving equations of the prospective and retrospective mathematical reserves. The model is applied to a sample of contracts drawn at random from a mutual insurance company.
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach
Resumo:
Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process
Resumo:
Estudi, disseny i implementació de diferents tècniques d’agrupament defibres (clustering) per tal d’integrar a la plataforma DTIWeb diferentsalgorismes de clustering i tècniques de visualització de clústers de fibres de forma quefaciliti la interpretació de dades de DTI als especialistes
Resumo:
In this project a research both in finding predictors via clustering techniques and in reviewing the Data Mining free software is achieved. The research is based in a case of study, from where additionally to the KDD free software used by the scientific community; a new free tool for pre-processing the data is presented. The predictors are intended for the e-learning domain as the data from where these predictors have to be inferred are student qualifications from different e-learning environments. Through our case of study not only clustering algorithms are tested but also additional goals are proposed.