22 resultados para Self-organizing networks
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Self-organizing maps (Kohonen 1997) is a type of artificial neural network developedto explore patterns in high-dimensional multivariate data. The conventional versionof the algorithm involves the use of Euclidean metric in the process of adaptation ofthe model vectors, thus rendering in theory a whole methodology incompatible withnon-Euclidean geometries.In this contribution we explore the two main aspects of the problem:1. Whether the conventional approach using Euclidean metric can shed valid resultswith compositional data.2. If a modification of the conventional approach replacing vectorial sum and scalarmultiplication by the canonical operators in the simplex (i.e. perturbation andpowering) can converge to an adequate solution.Preliminary tests showed that both methodologies can be used on compositional data.However, the modified version of the algorithm performs poorer than the conventionalversion, in particular, when the data is pathological. Moreover, the conventional ap-proach converges faster to a solution, when data is \well-behaved".Key words: Self Organizing Map; Artificial Neural networks; Compositional data
Resumo:
Low-cost tin oxide gas sensors are inherently nonspecific. In addition, they have several undesirable characteristics such as slow response, nonlinearities, and long-term drifts. This paper shows that the combination of a gas-sensor array together with self-organizing maps (SOM's) permit success in gas classification problems. The system is able to determine the gas present in an atmosphere with error rates lower than 3%. Correction of the sensor's drift with an adaptive SOM has also been investigated
Resumo:
Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.
Resumo:
Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.
Resumo:
The aim of this paper is to analyse the colocation patterns of industries and firms. We study the spatial distribution of firms from different industries at a microgeographic level and from this identify the main reasons for this locational behaviour. The empirical application uses data from Mercantile Registers of Spanish firms (manufacturers and services). Inter-sectorial linkages are shown using self-organizing maps. Key words: clusters, microgeographic data, self-organizing maps, firm location JEL classification: R10, R12, R34
Resumo:
The synthesis of magnetic nanoparticles with monodispere size distributions, their self assembly into ordered arrays and their magnetic behavior as a function of structural order (ferrofluids and 2D assemblies) are presented. Magnetic colloids of monodispersed, passivated, cobalt nanocrystals were produced by the rapid pyrolysis of cobalt carbonyl in solution. The size, size distribution (std. dev.< 5%) and the shape of the nanocrystals were controlled by varying the surfactant, its concentration, the reaction rate and the reaction temperature. The Co particles are defect-free single crystals with a complex cubic structure related to the beta phase of manganese (epsilon-Co). In the 2D assembly, a collective behavior was observed in the low-field susceptibility measurements where the magnetization of the zero field cooled process increases steadily and the magnetization of the field cooling process is independent the temperature. This was different from the observed behavior in a sample comprised of disordered interacting particles. A strong paramagnetic contribution appears at very low temperatures where the magnetization increases drastically after field cooling the sample. This has been attributed to the Co surfactant-particle interface since no magnetic atomic impurities are present in these samples.
Resumo:
Self-organization is a growing interdisciplinary field of research about a phenomenon that can be observed in the Universe, in Nature and in social contexts. Research on self-organization tries to describe and explain forms, complex patterns and behaviours that arise from a collection of entities without an external organizer. As researchers in artificial systems, our aim is not to mimic self-organizing phenomena arising in Nature, but to understand and to control underlying mechanisms allowing desired emergence of forms, complex patterns and behaviours. Rather than attempting to eliminate such self-organization in artificial systems, we think that this might be deliberately harnessed in order to reach desirable global properties. In this paper we analyze three forms of self-organization: stigmergy, reinforcement mechanisms and cooperation. The amplification phenomena founded in stigmergic process or in reinforcement process are different forms of positive feedbacks that play a major role in building group activity or social organization. Cooperation is a functional form for self-organization because of its ability to guide local behaviours in order to obtain a relevant collective one. For each forms of self-organisation, we present a case study to show how we transposed it to some artificial systems and then analyse the strengths and weaknesses of such an approach
Resumo:
Hi ha diversos mètodes d'anàlisi que duen a terme una agrupació global de la sèries de mostres de microarrays, com SelfOrganizing Maps, o que realitzen agrupaments locals tenint en compte només un subconjunt de gens coexpressats, com Biclustering, entre d'altres. En aquest projecte s'ha desenvolupat una aplicació web: el PCOPSamplecl, és una eina que pertany als mètodes d'agrupació (clustering) local, que no busca subconjunts de gens coexpresats (anàlisi de relacions linials), si no parelles de gens que davant canvis fenotípics, la seva relació d'expressió pateix fluctuacions. El resultats del PCOPSamplecl seràn les diferents distribucions finals de clusters i les parelles de gens involucrades en aquests canvis fenotípics. Aquestes parelles de gens podràn ser estudiades per trobar la causa i efecte del canvi fenotípic. A més, l'eina facilita l'estudi de les dependències entre les diferents distribucions de clusters que proporciona l'aplicació per poder estudiar la intersecció entre clusters o l'aparició de subclusters (2 clusters d'una mateixa agrupació de clusters poden ser subclusters d'altres clusters de diferents distribucions de clusters). L'eina és disponible al servidor: http://revolutionresearch.uab.es/
Resumo:
In this paper we present a Bayesian image reconstruction algorithm with entropy prior (FMAPE) that uses a space-variant hyperparameter. The spatial variation of the hyperparameter allows different degrees of resolution in areas of different statistical characteristics, thus avoiding the large residuals resulting from algorithms that use a constant hyperparameter. In the first implementation of the algorithm, we begin by segmenting a Maximum Likelihood Estimator (MLE) reconstruction. The segmentation method is based on using a wavelet decomposition and a self-organizing neural network. The result is a predetermined number of extended regions plus a small region for each star or bright object. To assign a different value of the hyperparameter to each extended region and star, we use either feasibility tests or cross-validation methods. Once the set of hyperparameters is obtained, we carried out the final Bayesian reconstruction, leading to a reconstruction with decreased bias and excellent visual characteristics. The method has been applied to data from the non-refurbished Hubble Space Telescope. The method can be also applied to ground-based images.
Resumo:
L’estudi examina les relacions entre (1) les xarxes socials personals de la població immigrant resident a Barcelona i (2) les seves identitats culturals múltiples. L’objectiu principal de l’estudi és entendre com el contingut i l’estructura de les relacions socials dels immigrants facilita o dificulta (1) tenir un sentiment de pertinença a les noves cultures d’acollida, la catalana i la espanyola, i (2) la integració d’aquestes noves identitats socioculturals amb la seva identitat d’origen en una nova identitat bicultural cohesiva. El nostre plantejament inicial era que els immigrants amb xarxes socials més diverses des del punt de vista de la seva composició cultural tindrien més recursos socials i experiències cognitives més diverses , factors que afavoreixen les identificacions múltiples i la participació cívica. Els resultats de l’estudi mostren que el grau d’identificació dels participants amb la seva cultura ètnica o d’origen és força alt i, en certa mesura, més alt en comparació amb les cultures d’acollida ( catalana, cívica i espanyola). Tanmateix, el vincle dels participants amb les cultures d’acollida (p. ex., la cultura catalana) és prou rellevant per a indicar una orientació bicultural (catalana i ètnica). Les anàlisis de correlacions revelen que sentir-se català no impedeix sentir-se part de la comunitat etnocultural d’origen. A més, existeix una interrelació entre l'orientació cultural catalana i la identificació amb les comunitats cíviques locals. De la mateixa manera, tenir competències en llengua catalana no va en detriment de les competències en llengua castellana. Les anàlisis també mostren que factors com l’orientació cultural catalana, l’ús del català i la identificació amb la cultura catalana tenen una correlació positiva amb el grau de chohesio de la indentitat bicultural, afavoreixen el benestar psicològic i disminueixen l’estrès aculturatiu. L’anàlisi de les xarxes socials mostra que la identificació amb la cultura catalana, l’orientació cultural catalana i la integració de la identitat són factors clau per tenir xarxes socials més diverses des del punt de vista ètnic i lingüístic, amb menys membres del col•lectiu d’origen, i amb subgrups o “cliques” culturalment més heterogenis. La identificació espanyola també prediu, en mesura més reduïda, la diversitat de les xarxes. Els nostres resultats contribueixen a la recerca actual i les teories sobre interculturalitat i identitat cultural.
Resumo:
We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.
Resumo:
In this paper, we present a first approach to evolve a cooperative behavior in ad hoc networks. Since wireless nodes are energy constrained, it may not be in the best interest of a node to always accept relay requests. On the other hand, if all nodes decide not to expend energy in relaying, then network throughput will drop dramatically. Both these extreme scenarios are unfavorable to the interests of a user. In this paper we deal with the issue of user cooperation in ad hoc networks by developing the algorithm called Generous Tit-For-Tat. We assume that nodes are rational, i.e., their actions are strictly determined by self-interest, and that each node is associated with a minimum lifetime constraint. Given these lifetime constraints and the assumption of rational behavior, we study the added behavior of the network.
Resumo:
The purpose of this paper is to present an approach for students to have non-traditional learning assessed for credit and introduce a tool that facilitates this process. The OCW Backpack system can connect self-learners with KNEXT assessment services to obtain college credit for prior learning. An ex post facto study based on historical data collected over the past two years at Kaplan University (KU) is presented to validate the portfolio assessment process. Cumulative GPA was compared for students who received experiential credit for learning derived from personal or professional experience with a matched sample of students with no experiential learning credits. The study found that students who received experiential credits perform better than the matched sample students on GPA. The findings validate the KU portfolio assessment process. Additionally, the results support the capability of the OCW Backpack to capture the critical information necessary to evaluate non-traditional learning for university credit.
Resumo:
We propose a procedure for analyzing and characterizing complex networks. We apply this to the social network as constructed from email communications within a medium sized university with about 1700 employees. Email networks provide an accurate and nonintrusive description of the flow of information within human organizations. Our results reveal the self-organization of the network into a state where the distribution of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of scaling in other self-organized complex systems, as, for instance, river networks, could also be the underlying driving force in the formation and evolution of social networks.
Resumo:
Uncorrelated random scale-free networks are useful null models to check the accuracy and the analytical solutions of dynamical processes defined on complex networks. We propose and analyze a model capable of generating random uncorrelated scale-free networks with no multiple and self-connections. The model is based on the classical configuration model, with an additional restriction on the maximum possible degree of the vertices. We check numerically that the proposed model indeed generates scale-free networks with no two- and three-vertex correlations, as measured by the average degree of the nearest neighbors and the clustering coefficient of the vertices of degree k, respectively.