13 resultados para Seizures, Febrile
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 −/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.
Resumo:
Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.
Resumo:
Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.
Resumo:
Purpose: To analyze if the use of Phenobarbital compared with Levetiracetam, it’s associated with more neurodevelopmental problems in newborns treated for neonatal seizures. As a secondary objective identify which are the most affected areas of the neurodevelopment: cognition, socio-‐emotional, motor or language skills.Design: A 5 years long clinical trial administering, with double-‐blind and a randomized distribution of the sample, Phenobarbital or Levetiracetam for the management of neonatal seizures
Resumo:
Purpose: To analyze if the use of Phenobarbital compared with Levetiracetam, it’s associated with more neurodevelopmental problems in newborns treated for neonatal seizures. As a secondary objective identify which are the most affected areas of the neurodevelopment: cognition, socio-‐emotional, motor or language skills.Design: A 5 years long clinical trial administering, with double-‐blind and a randomized distribution of the sample, Phenobarbital or Levetiracetam for the management of neonatal seizures
Resumo:
Background: Hospitals in countries with public health systems have recently adopted organizational changes to improve efficiency and resource allocation, and reducing inappropriate hospitalizations has been established as an important goal. AIMS: Our goal was to describe the functioning of a Quick Diagnosis Unit in a Spanish public university hospital after evaluating 1,000 consecutive patients. We also aimed to ascertain the degree of satisfaction among Quick Diagnosis Unit patients and the costs of the model compared to conventional hospitalization practices. DESIGN: Observational, descriptive study. METHODS: Our sample comprised 1,000 patients evaluated between November 2008 and January 2010 in the Quick Diagnosis Unit of a tertiary university public hospital in Barcelona. Included patients were those who had potentially severe diseases and would normally require hospital admission for diagnosis but whose general condition allowed outpatient treatment. We analyzed several variables, including time to diagnosis, final diagnoses and hospitalizations avoided, and we also investigated the mean cost (as compared to conventional hospitalization) and the patients' satisfaction. RESULTS: In 88% of cases, the reasons for consultation were anemia, anorexia-cachexia syndrome, febrile syndrome, adenopathies, abdominal pain, chronic diarrhea and lung abnormalities. The most frequent diagnoses were cancer (18.8%; mainly colon cancer and lymphoma) and Iron-deficiency anemia (18%). The mean time to diagnosis was 9.2 days (range 1 to 19 days). An estimated 12.5 admissions/day in a one-year period (in the internal medicine department) were avoided. In a subgroup analysis, the mean cost per process (admission-discharge) for a conventional hospitalization was 3,416.13 Euros, while it was 735.65 Euros in the Quick Diagnosis Unit. Patients expressed a high degree of satisfaction with Quick Diagnosis Unit care. CONCLUSIONS: Quick Diagnosis Units represent a useful and cost-saving model for the diagnostic study of patients with potentially severe diseases. Future randomized study designs involving comparisons between controls and intervention groups would help elucidate the usefulness of Quick Diagnosis Units as an alternative to conventional hospitalization.
Resumo:
Our objective was to assess the applicability of hysterectomy by the vaginal route completely performed with Autosuture staples. Between January 1992 and September 1993, 5 vaginal hysterectomies using Autosuture staplers were performed by the authors. Five vaginal hysterectomies matched for age, parity, and uterine size performed by the same surgeons using reabsorbable sutures during the same period were used as case controls. No febrile morbidity, cuff infections, thrombophlebitis, bladder injury, or hemorrhage complications were observed in the 10 women who entered the study. In summary, vaginal hysterectomy can be performed with Autosutures easily, probably faster with experience, and with less oozing from the operative field, thus providing a safe procedure.
Resumo:
The objective of this study was to assess the applicability of posterior wall repair with a synthetic absorbable mesh. Between January and September 1996, five posterior repairs using absorbable synthetic meshes were performed. Five posterior wall repairs in patients matched for age, parity, and rectocele degree were performed according to usual procedures during the same period, and were used as controls. No febrile morbidity, cuff or posterior vaginal wall infections, thrombophlebitis, rectal injury, or hemorrhagic complications were observed in the 10 women who entered the study. In summary, posterior wall repair can be easily performed with an absorbable soft tissue patch, theoretically preserving sexual activity, and probably offers better functional results with longer experience, thus providing a safe and useful procedure in sexually active women.
Resumo:
Aims: To assess the relationship between clinically maternal chorioamnionitis and outcome in preterm very-low-birth weight (VLBW) infants. Methods: An observational case-control study was conducted in the neonatology departments of 12 acute care teaching hospitals in Spain. Between January 2004 and December 2006, all consecutive VLBW (F1500 g) infants who were born to a mother with clinical chorioamnionitis were enrolled. The controls included infants who were born to mothers without chorioamnionitis, matched by gestational age, and immediately born after each index case. At a corrected age of 24 months, a neurological examination and a psychological assessment of the surviving children were performed.Results: Sixty-six of the newborn infants died; therefore, 262 infants from the original sample were available for the study. Follow-up data were obtained at a corrected age of 24 months from a total of 209 children (106 cases and 103 controls, 80% of the original sample size). Seventy children (33.5%) were diagnosed with some type of sequelae. The following conditions were all more prevalent in infants born to mothers with chorioamnionitis in comparison to controls: low development quotient (98.3'12.15 vs. 95.9'15.64; Ps0.497), cerebral palsy (4.9% vs. 10.4%; Ps0.138), seizures (1.0% vs. 3.8%; Ps0.369), and other neurological or sensorial sequelae (32.0% vs. 34.9%; Ps0.611). Conclusions: After controlling for gestational age, the study population demonstrated that the neurological outcomes in infants at a corrected age of 24 months was not worsened by chorioamnionitis.
Resumo:
Tuberous sclerosis (TS) or Bourneville"s disease is a rare, multisystemic genetic disorder. It involves alterations to ectodermal and mesodermal cell differentiation and proliferation, causing benign hamartomatous tumors, neurofibromas and angiofibromas in the brain and other vital organs including the kidney, heart, eyes, lungs, skin and mucosa. It also affects the central nervous system and produces neurological dysfunctions such as seizures, mental retardation and behavior disorders. Tuberous (rootshaped) growths develop in the brain, and calcify over time, becoming hard and sclerotic, hence the name given to the disease. Although inheritance is autosomal dominant, 60-70% of cases occur through spontaneous mutations. The disease is related to some mutations or alterations in two genes, named TSC1 and TSC2. Discovered in 1997, TSC1 is located on chromosome 9q34 and produces a protein called hamartin. TSC2, discovered in 1993, is located on chromosome 16p13 and produces a protein called tuberin. The prevalence of the disease is 1/6000-10,000 live newborns, and it is estimated that there are 1-2 million sufferers worldwide. This paper presents a literature review and a family case report of a mother and two of her daughters with oral features of TS
Resumo:
Abstract Kainic acid (KA) causes seizures and neuronal loss in the hippocampus. The present study investigated whether a recreational schedule of 3,4-methylenedioxymethamphetamine (MDMA) favours the development of a seizure state in a model of KA-induced epilepsy and potentiates the toxicity profile of KA (20 or 30 mg/kg). Adolescent male C57BL/6 mice received saline or MDMA t.i.d. (s.c. every 3 h), on 1 day a week, for 4 consecutive weeks. Twenty-four hours after the last MDMA exposure, the animals were injected with saline or KA (20 or 30 mg/kg). After this injection, we evaluated seizures, hippocampal neuronal cell death, microgliosis, astrogliosis, and calcium binding proteins. MDMA pretreatment, by itself, did not induce neuronal damage but increased seizure susceptibility in all KA treatments and potentiated the presence of Fluoro-Jade-positive cells in CA1. Furthermore, MDMA, like KA, significantly decreased parvalbumin levels in CA1 and dentate gyrus, where it potentiated the effects of KA. The amphetamine derivative also promoted a transient decrease in calbindin and calretinin levels, indicative of an abnormal neuronal discharge. In addition, treatment of cortical neurons with MDMA (1050 μM) for 6 or 48 h significantly increased basal Ca2 +, reduced basal Na+ levels and potentiated kainate response. These results indicate that MDMA potentiates KA-induced neurodegeneration and also increases KA seizure susceptibility. The mechanism proposed includes changes in Calcium Binding Proteins expression, probably due to the disruption of intracellular ionic homeostasis, or/and an indirect effect through glutamate release.
Resumo:
Abstract Kainic acid (KA) causes seizures and neuronal loss in the hippocampus. The present study investigated whether a recreational schedule of 3,4-methylenedioxymethamphetamine (MDMA) favours the development of a seizure state in a model of KA-induced epilepsy and potentiates the toxicity profile of KA (20 or 30 mg/kg). Adolescent male C57BL/6 mice received saline or MDMA t.i.d. (s.c. every 3 h), on 1 day a week, for 4 consecutive weeks. Twenty-four hours after the last MDMA exposure, the animals were injected with saline or KA (20 or 30 mg/kg). After this injection, we evaluated seizures, hippocampal neuronal cell death, microgliosis, astrogliosis, and calcium binding proteins. MDMA pretreatment, by itself, did not induce neuronal damage but increased seizure susceptibility in all KA treatments and potentiated the presence of Fluoro-Jade-positive cells in CA1. Furthermore, MDMA, like KA, significantly decreased parvalbumin levels in CA1 and dentate gyrus, where it potentiated the effects of KA. The amphetamine derivative also promoted a transient decrease in calbindin and calretinin levels, indicative of an abnormal neuronal discharge. In addition, treatment of cortical neurons with MDMA (1050 μM) for 6 or 48 h significantly increased basal Ca2 +, reduced basal Na+ levels and potentiated kainate response. These results indicate that MDMA potentiates KA-induced neurodegeneration and also increases KA seizure susceptibility. The mechanism proposed includes changes in Calcium Binding Proteins expression, probably due to the disruption of intracellular ionic homeostasis, or/and an indirect effect through glutamate release.