271 resultados para Scaled-particle Theory
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We present existence, uniqueness and continuous dependence results for some kinetic equations motivated by models for the collective behavior of large groups of individuals. Models of this kind have been recently proposed to study the behavior of large groups of animals, such as flocks of birds, swarms, or schools of fish. Our aim is to give a well-posedness theory for general models which possibly include a variety of effects: an interaction through a potential, such as a short-range repulsion and long-range attraction; a velocity-averaging effect where individuals try to adapt their own velocity to that of other individuals in their surroundings; and self-propulsion effects, which take into account effects on one individual that are independent of the others. We develop our theory in a space of measures, using mass transportation distances. As consequences of our theory we show also the convergence of particle systems to their corresponding kinetic equations, and the local-in-time convergence to the hydrodynamic limit for one of the models.
Resumo:
In order to explain the speed of Vesicular Stomatitis Virus VSV infections, we develop a simple model that improves previous approaches to the propagation of virus infections. For VSV infections, we find that the delay time elapsed between the adsorption of a viral particle into a cell and the release of its progeny has a veryimportant effect. Moreover, this delay time makes the adsorption rate essentially irrelevant in order to predict VSV infection speeds. Numerical simulations are in agreement with the analytical results. Our model satisfactorily explains the experimentally measured speeds of VSV infections
Resumo:
We extend to score, Wald and difference test statistics the scaled and adjusted corrections to goodness-of-fit test statistics developed in Satorra and Bentler (1988a,b). The theory is framed in the general context of multisample analysis of moment structures, under general conditions on the distribution of observable variables. Computational issues, as well as the relation of the scaled and corrected statistics to the asymptotic robust ones, is discussed. A Monte Carlo study illustrates thecomparative performance in finite samples of corrected score test statistics.
Resumo:
In this paper we propose a generalization of the density functional theory. The theory leads to single-particle equations of motion with a quasilocal mean-field operator, which contains a quasiparticle position-dependent effective mass and a spin-orbit potential. The energy density functional is constructed using the extended Thomas-Fermi approximation and the ground-state properties of doubly magic nuclei are considered within the framework of this approach. Calculations were performed using the finite-range Gogny D1S forces and the results are compared with the exact Hartree-Fock calculations
Resumo:
The extension of density functional theory (DFT) to include pairing correlations without formal violation of the particle-number conservation condition is described. This version of the theory can be considered as a foundation of the application of existing DFT plus pairing approaches to atoms, molecules, ultracooled and magnetically trapped atomic Fermi gases, and atomic nuclei where the number of particles is conserved exactly. The connection with Hartree-Fock-Bogoliubov (HFB) theory is discussed, and the method of quasilocal reduction of the nonlocal theory is also described. This quasilocal reduction allows equations of motion to be obtained which are much simpler for numerical solution than the equations corresponding to the nonlocal case. Our theory is applied to the study of some even Sn isotopes, and the results are compared with those obtained in the standard HFB theory and with the experimental ones.
Resumo:
An extension of the self-consistent field approach formulation by Cohen in the preceding paper is proposed in order to include the most general kind of two-body interactions, i.e., interactions depending on position, momenta, spin, isotopic spin, etc. The dielectric function is replaced by a dielectric matrix. The evaluation of the energies involves the computation of a matrix inversion and trace.
Resumo:
A new method to solve the Lorentz-Dirac equation in the presence of an external electromagnetic field is presented. The validity of the approximation is discussed, and the method is applied to a particle in the presence of a constant magnetic field.
Resumo:
The propagator of a relativistic spinning particle is calculated using the Becchi-Rouet-Stora-Tyutin-(BRST)-invariant path-integral formalism of Fradkin and Vilkovisky. The spinless case is considered as an introduction to the formalism.
Resumo:
A pseudoclassical model for a spinning nonrelativistic particle is presented. The model contains two first-class constraints which after quantization give rise to the Levy-Leblond equation for a spin-1/2 particle.
Resumo:
A pseudoclassical model for a relativistic spinning particle is studied. The only physically meaningful world line is the one without Zitterbewegung. The Poincar realization for this situation is constructed.
Resumo:
The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions of Bogoliubov theory are compared with those of Hartree-Fock theory and of the hydrodynamic model. We show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover from the hydrodynamic regime, holding at low energies, to the independent-particle regime is explicitly explored by studying the frequency of the surface mode as a function of their angular momentum. The applicability of the semiclassical approximation for the excited states is also discussed. We show that the semiclassical approach provides simple and accurate formulas for the density of states and the quantum depletion of the condensate.
Resumo:
We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.
Resumo:
Starting from the standard one-time dynamics of n nonrelativistic particles, the n-time equations of motion are inferred, and a variational principle is formulated. A suitable generalization of the classical LieKnig theorem is demonstrated, which allows the determination of all the associated presymplectic structures. The conditions under which the action of an invariance group is canonical are studied, and a corresponding Noether theorem is deduced. A formulation of the theory in terms of n first-class constraints is recovered by means of coisotropic imbeddings. The proposed approach also provides for a better understanding of the relativistic particle dynamics, since it shows that the different roles of the physical positions and the canonical variables is not peculiar to special relativity, but rather to any n-time approach: indeed a nonrelativistic no-interaction theorem is deduced.
Resumo:
We calculate the ripplon field contribution to the self-energy of an electron exterior to a liquid for planar and spherical geometries. We compare the full dielectric calculation of the electron-liquid interaction with the simpler alternative method consisting of integrating the electron-atom static-induced-dipolar potential through the whole liquid volume. We obtain good agreement between both methods for a nonpolar liquid such as 4He but differences up to 40% for a polar liquid such as water. We study the conditions under which the ripplon contribution to the self-energy is a perturbation. For an electron moving parallel to a planar liquid surface, we calculate the ripplon contribution to its stopping power. For this dynamical case, we conclude that the alternative method is a good approximation even for polar liquids.
Resumo:
The Lorentz-Dirac equation is not an unavoidable consequence of solely linear and angular momenta conservation for a point charge. It also requires an additional assumption concerning the elementary character of the charge. We here use a less restrictive elementarity assumption for a spinless charge and derive a system of conservation equations that are not properly the equation of motion because, as it contains an extra scalar variable, the future evolution of the charge is not determined. We show that a supplementary constitutive relation can be added so that the motion is determined and free from the troubles that are customary in the Lorentz-Dirac equation, i.e., preacceleration and runaways.