9 resultados para SORPTION ISOTHERM
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Two vegetable wastes, cork bark and grape stalks, were investigated for the removal of methylene blue from aqueous solution. The effects of contact time, dye concentration, pH, and temperature on sorption were studied relative to adsorption on a commercially-activated carbon. The highest adsorption yield was obtained within the pH range 5 to 10 for grape stalks and 7 to 10 for cork bark. The sorption kinetics of dye onto activated carbon and grape stalks was very fast. Kinetics data were fitted to the pseudo-first and second order kinetic equations, and the values of the pseudo-second-order initial rate constants were found to be 1.69 mg g-1 min-1 for activated carbon, 2.24 mg g-1 min-1 for grape stalks, and 0.90 mg g-1 min-1 for cork bark. Langmuir maximum sorption capacities for activated carbon, grape stalks, and cork bark for methylene blue estimated by the Orthogonal Distance Regression method (ODR) were 157.5 mg g-1, 105.6 mg g-1, and 30.52 mg g-1, respectively. FTIR spectra indicated that carboxylic groups and lignin play a significant role in the sorption of methylene blue. Electrostatic forces, n-p interactions, cation-p, and p-p stacking interactions contribute to methylene blue sorption onto grape stalks and cork bark. Grape stalks can be considered an efficient biosorbent and as a viable alternative to activated carbon and ion-exchange resins for the removal of methylene blue
Resumo:
Estudi elaborat a partir d’una estada a la Universitat Nacional de Yokohama des de maig fins a mitjans de juny del 2006. S'ha estudiat el comportament fàssic i la preparació de sílica mesoporosa pels nous tensioactius fluorats d'estructura C8F17SO2(C3H7)N(C2H4O)nH (abreujat C8F17(EO)n. El tensioactiu C8F17(EO)n forma micel•les allargades i cristalls líquids en aigua, i per tant pot ser adequat per a la preparació de materials mesoporosos. Sílica mesoestructurada es va preparar pel mètode de precipitació per autoagregació cooperativa. Un estudi sistemàtic es va realitzar, investigant la influència de les concentracions de tensioactiu i precursor (TEOS), l’efecte del pH i de la longitud de cadena de poliòxid d’etilè. Els materials es van caracteritzar per raigs X a angle petit (SAXS), sorció de nitrògen i TEM. Els materials obtinguts presenten diàmetres de por petits i parets de por gruixudes. A més, aquests materials posseeixen altes superfícies específiques, que s’han obtingut emprant concentracions de tensioactiu petites, produint parets de por robustes sense microporositat significativa. La superfície específica es manté durant el procés de calcinació, malgrat un petit encongiment degut a l’entrecreuament de la sílica. Els materials de sílica obtinguts han mostrat ser significativament més robustos que altres materials similars descrits a la bibliografia, com la sílica MCM-41.
Resumo:
Report for the scientific sojourn at the Université de Bourgogne, France, from July until October 2007..Surlie ageing after second fermentation is a fundamental operation in the production of quality sparkling wine like Cava and Champagne. Recently, the importance of the interaction between wine and lees cell surface has been reported. Cell surface properties depending on wall biochemical composition are major determinants in microbial interactions, having important repercussions in several technological aspects. Sorption and flocculation are especially important in sparkling wine production, and are governed by distinct cell surface properties. The aim of the present research carried out during the four months of the stage was to know the implication of lees surface modifications occurring during surlie ageing in sparkling wine quality and elaboration. The relationship between physico-chemical properties such as hydrophobicity, charge and electron-donor characteristics, and the yeast surface sorption capacities, we determined these factors in a model system. Then, real industrial lees samples were investigated. The surface properties of sparkling wine lees from the same strain of Saccharomyces cerevisiae were characterized according to the time of surlie ageing, and their possible influence on lees sorption and flocculation capacity was evaluated. Surlie ageing after second fermentation is a fundamental operation in the production of quality sparkling wine like Cava and Champagne. Recently, the importance of the interaction between wine and lees cell surface has been reported. Cell surface properties depending on wall biochemical composition are major determinants in microbial interactions, having important repercussions in several technological aspects. Sorption and flocculation are especially important in sparkling wine production, and are governed by distinct cell surface properties. The aim of the present research carried out during the four months of the stage was to know the implication of lees surface modifications occurring during surlie ageing in sparkling wine quality and elaboration. The relationship between physico-chemical properties such as hydrophobicity, charge and electron-donor characteristics, and the yeast surface sorption capacities, we determined these factors in a model system. Then, real industrial lees samples were investigated. The surface properties of sparkling wine lees from the same strain of Saccharomyces cerevisiae were characterized according to the time of surlie ageing, and their possible influence on lees sorption and flocculation capacity was evaluated.
Resumo:
Fully biodegradable composite materials were obtained through reinforcement of a commercially available thermoplastic starch (TPS) matrix with rapeseed fibers (RSF). The influence of reinforcement content on the water sorption capacity, as well as thermal and thermo-mechanical properties of composites were evaluated. Even though the hydrophilic character of natural fibers tends to favor the absorption of water, results demonstrated that the incorporation of RSF did not have a significant effect on the water uptake of the composites. DSC experiments showed that fibers restricted the mobility of the starch macromolecules from the TPS matrix, hence reducing their capacity to crystallize. The viscoelastic behaviour of TPS was also affected, and reinforced materials presented lower viscous deformation and recovery capacity. In addition, the elasticity of materials was considerably diminished when increasing fiber content, as evidenced in the TMA and DMTA measurements
Resumo:
New methodologies for the analysis of volatile compoundsusing needle traps. Applications to breath, atmospheric andwater analysis. A new preconcentration technique has been developed for the analysis of volatile compounds based on the use of needle traps. These traps are based on stainless steel needles filled with one or more adsorbents, which allows the preconcentration of the anilities inside the trap by passing a gas flow through the needle. The parameters affecting the sorption/desorption process have been assessed (e.g. needle and liner dimensions, injector temperature, split less time, memory effects, and stability inside the needle). For liquid samples, four different sampling methodologies were studied, including passive and active sampling methods. The best results, considering the simplicity and sensitivity, are obtained by sampling the headspace volume using various cycles of a small and fix volume. Once the best conditions of analysis have been found, the method has been validated for gas and liquid samples. The results obtained show that needle traps are a good analytical methodology for the analysis of breath, environmental and liquid samples
Resumo:
Thermal energy storage (TES) can increase the thermal energy effieresa, of a process by reusing the waste heat from industrial process, solar energy or other sources. There are different ways to store thermal energy: by sensible heat, by latest heat, by sorption process or by chemical reaction. This thesrs provides a-state-of-the-art review of the experimental performance of TES systems based on solid gas sorption process and chemical reactions. The importance of theses processes is that provides a heat loss free storage system with a high energy density.
Resumo:
The concept of conditional stability constant is extended to the competitive binding of small molecules to heterogeneous surfaces or macromolecules via the introduction of the conditional affinity spectrum (CAS). The CAS describes the distribution of effective binding energies experienced by one complexing agent at a fixed concentration of the rest. We show that, when the multicomponent system can be described in terms of an underlying affinity spectrum [integral equation (IE) approach], the system can always be characterized by means of a CAS. The thermodynamic properties of the CAS and its dependence on the concentration of the rest of components are discussed. In the context of metal/proton competition, analytical expressions for the mean (conditional average affinity) and the variance (conditional heterogeneity) of the CAS as functions of pH are reported and their physical interpretation discussed. Furthermore, we show that the dependence of the CAS variance on pH allows for the analytical determination of the correlation coefficient between the binding energies of the metal and the proton. Nonideal competitive adsorption isotherm and Frumkin isotherms are used to illustrate the results of this work. Finally, the possibility of using CAS when the IE approach does not apply (for instance, when multidentate binding is present) is explored. © 2006 American Institute of Physics.
Resumo:
An analytical approach for the interpretation of multicomponent heterogeneous adsorption or complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier transform, applied to analyze the corresponding integral equation, leads to an inversion formula which allows the computation of the multicomponent affinity spectrum underlying a given competitive isotherm. Although a different mathematical methodology is used, this procedure can be seen as the extension to multicomponent systems of the classical Sips’s work devoted to monocomponent systems. Furthermore, a methodology which yields analytical expressions for the main statistical properties (mean free energies of binding and covariance matrix) of multidimensional affinity spectra is reported. Thus, the level of binding correlation between the different components can be quantified. It has to be highlighted that the reported methodology does not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance of the binding energies of the different components. Nonideal competitive consistent adsorption isotherm, widely used in metal/proton competitive complexation to environmental macromolecules, and Frumkin competitive isotherms are selected to illustrate the application of the reported results. Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are obtained for the NICCA case. © 2004 American Institute of Physics.
Resumo:
Chromium (VI) removal and its reduction to chromium (III) from aqueous solution by untreated and heat-treated Quercus cerris and heat-treated Quercus suber black agglomerate cork granules was investigated. Initial screening studies revealed that among the sorbents tested, untreated Q. cerris and Q. suber black agglomerate are the most efficient in the removal of Cr(VI) ions and were selected for adsorption essays. Heat treatment adversely affected chromium adsorption and chromium (VI) reduction in Q. cerris cork. The highest metal uptake was found at pH 3.0 for Q. cerris and pH 2.0 for black agglomerate. The experimental data fitted the Langmuir model and the calculated qmax was 22.98 mg/g in black agglomerate and 21.69 mg/g in untreated Q. cerris cork. The FTIR results indicated that while in black agglomerate, lignin is the sole component responsible for Cr(VI) sorption, and in untreated Q. cerris cork, suberin and polysaccharides also play a significant role on the sorption. The SEM-EDX results imply that chromium has a homogenous distribution within both cork granules. Also, phloemic residues in Q. cerris granules showed higher chromium concentration. The results obtained in this study show that untreated Q. cerris and black agglomerate cork granules can be an effective and economical alternative to more costly materials for the treatment of liquid wastes containing chromium