5 resultados para SOMATIC-CELLS
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells andprovided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold greattherapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect,somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells. These cell lines appear indistinguishable from human embryonic stem cells and iPS cells from healthy individuals. Most importantly, we show that corrected Fanconi-anaemia-specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal, that is, disease-free. These data offer proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.
Resumo:
Induced pluripotent stem cells (iPSC ) provide an invaluable resource for regenerative medicine as they allow the generationof patient-specific progenitors with potential value for cell therapy. However, in many instances, an off-the-shelf approach isdesirable, such as for cell therapy of acute conditions or when the patient’s somatic cells are altered as a consequence of a chronicdisease or aging. Cord blood (CB) stem cells appear ideally suited for this purpose as they are young cells expected to carryminimal somatic mutations and possess the immunological immaturity of newborn cells; additionally, several hundred thousandimmunotyped CB units are readily available through a worldwide network of CB banks. Here we present a detailed protocol for thederivation of CB stem cells and how they can be reprogrammed to pluripotency by retroviral transduction with only two factors(OCT 4 and SO X2) in 2 weeks and without the need for additional chemical compounds.
Resumo:
Las células madre embrionarias (Embryonic Stem Cells; ESC) son células pluripotentes que presentan la capacidad de dividirse indefinidamente a la vez que mantienen la habilidad para diferenciarse a cualquier tipo celular. Aunque de manera rutinaria se derivan a partir de la masa celular interna de embriones en estadio de blastocisto, también pueden derivarse a partir de embriones en estadios precompactacionales y de embriones reconstruidos por procesos de transferencia nuclear. Debido a que durante el desarrollo embrionario temprano, momento en el que se derivan las ESC, tienen lugar profundos cambios de metilación en el genoma, tanto la derivación como el cultivo se consagran como técnicas que pueden alterar los patrones de metilación en genes regulados por impronta genómica. Con el objetivo de analizar la estabilidad epigenética de embriones preimplantacionales y ESC murinas, en este trabajo se ha optimizado un protocolo de anàlisis de los niveles de metilación mediante pirosecuenciación. Para ello se han seleccionado tres genes regulados por impronta genómica (H19/Igf2, Snrpn and Peg3), dos genes relacionados con el mantenimiento de pluripotencia en ESC (Oct4, Nanog y Sox2) y dos genes marcadores de diferenciación temprana (Cdx2 y Gata6). Nuestros resultados muestran que algunos grupos de embriones preimplantacionales presentan una hipo e hipermetilación en las regiones diferencialmente metiladas (Differentially Methylated Regions, DMRs) de los genes Snrpn y Peg3. Además, la línea de ESC analizada presentó anomalías en los tres genes regulados por impronta genómica. No obstante, el hecho de que esta línea fuera inestable a nivel cariotípico no permite establecer una relación entre el cultivo in vitro o la técnica de derivación y la inestabilidad epigenética demostrada. Por todo esto, parece pertinente analizar tanto la integridad epigenética como la estabilidad cromosómica de ESC antes de proceder a realizar ensayos clínicos en humanos.
Resumo:
The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA-repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination.
Resumo:
The generation of patient-specific induced pluripotent stem cells (iPSCPSCPSCs) offers unprecedented opportunities for modeling and treating human disease. In combination with gene therapy, the iPSCPSCPSC technology can be used to generate disease-free progenitor cells of potential interest for autologous cell therapy. We explain a protocol for the reproducible generation of genetically corrected iPSCPSCPSCs starting from the skin biopsies of Fanconi anemia patients using retroviral transduction with OCT4, SOX2 and KLF4. Before reprogramming, the fibroblasts and/or keratinocytes of the patients are genetically corrected with lentiviruses expressing FANCA. The same approach may be used for other diseases susceptible to gene therapy correction. Genetically corrected, characterized lines of patient-specific iPSCPSCPSCs can be obtained in 4–5 months.