52 resultados para SNP microarray

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La industria de la producción de camarón es una de las industrias acuícolas que se encuentra en más crecimiento en la actualidad. Los estudios para encontrar marcadores genéticos son muy efectivos para la mejora de sus propiedades y de gran interés para los productores de camarón. En este trabajo se utilizaron seis individuos de una población de Litopenaeus vannamei, donde se encontraron cuatro polimorfismos de nucleótido único (SNPs) en el gen 5HT1R (5-hidroxitriptamina receptor1) y un SNP en el gen STAT (transductor de señal y activador de la transcripción). Sin embargo, el polimorfismo en el gen STAT resultó ser homocigoto en una población diferente utilizada para análisis de asociación. Los presentes análisis revelaron que el alelo C, en dos polimorfismos SNP (C109T y C395G) del gen 5HT1R, tiende a estar asociado con el aumento del peso corporal. Consideramos que hay necesidad de hacer nuevos estudios utilizando una muestra más amplia y diversa de la población en cuestión.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Recent studies in pigs have detected copy number variants (CNVs) using the Comparative Genomic Hybridization technique in arrays designed to cover specific porcine chromosomes. The goal of this study was to identify CNV regions (CNVRs) in swine species based on whole genome SNP genotyping chips. Results: We used predictions from three different programs (cnvPartition, PennCNV and GADA) to analyze data from the Porcine SNP60 BeadChip. A total of 49 CNVRs were identified in 55 animals from an Iberian x Landrace cross (IBMAP) according to three criteria: detected in at least two animals, contained three or more consecutive SNPs and recalled by at least two programs. Mendelian inheritance of CNVRs was confirmed in animals belonging to several generations of the IBMAP cross. Subsequently, a segregation analysis of these CNVRs was performed in 372 additional animals from the IBMAP cross and its distribution was studied in 133 unrelated pig samples from different geographical origins. Five out of seven analyzed CNVRs were validated by real time quantitative PCR, some of which coincide with well known examples of CNVs conserved across mammalian species. Conclusions: Our results illustrate the usefulness of Porcine SNP60 BeadChip to detect CNVRs and show that structural variants can not be neglected when studying the genetic variability in this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we propose a copula-based method to generate synthetic gene expression data that account for marginal and joint probability distributions features captured from real data. Our method allows us to implant significant genes in the synthetic dataset in a controlled manner, giving the possibility of testing new detection algorithms under more realistic environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We use an approach based on Factor Analysis to analyze datasets generated for transcriptional profiling. The method groups samples into biologically relevant categories, and enables the identification of genes and pathways most significantly associated to each phenotypic group, while allowing for the participation of a given gene in more than one cluster. Genes assigned to each cluster are used for the detection of pathways predominantly activated in that cluster by finding statistically significant associated GO terms. We tested the approach with a published dataset of microarray experiments in yeast. Upon validation with the yeast dataset, we applied the technique to a prostate cancer dataset. Results: Two major pathways are shown to be activated in organ-confined, non-metastatic prostate cancer: those regulated by the androgen receptor and by receptor tyrosine kinases. A number of gene markers (HER3, IQGAP2 and POR1) highlighted by the software and related to the later pathway have been validated experimentally a posteriori on independent samples. Conclusion: Using a new microarray analysis tool followed by a posteriori experimental validation of the results, we have confirmed several putative markers of malignancy associated with peptide growth factor signalling in prostate cancer and revealed others, most notably ERRB3 (HER3). Our study suggest that, in primary prostate cancer, HER3, together or not with HER4, rather than in receptor complexes involving HER2, could play an important role in the biology of these tumors. These results provide new evidence for the role of receptor tyrosine kinases in the establishment and progression of prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada al Department for Feed and Food Hygiene del National Veterinary Institute, Noruega, entre novembre i desembre del 2006. Els grans de cereal poden estar contaminats amb diferents espècies de Fusarium capaces de produir metabolits secundaris altament tòxics com trichotecenes, fumonisines o moniliformines. La correcta identificació d’aquestes espècies és de gran importància per l’assegurament del risc en l’àmbit de la salut humana i animal. La identificació de Fusarium en base a la seva morfologia requereix coneixements taxonòmics i temps; la majoria dels mètodes moleculars permeten la identificació d’una única espècie diana. Per contra, la tecnologia de microarray ofereix l’anàlisi paral•lel d’un alt nombre de DNA dianes. En aquest treball, s’ha desenvolupat un array per a la identificació de les principals espècies de Fusarium toxigèniques del Nord i Sud d’Europa. S’ha ampliat un array ja existent, per a la detecció de les espècies de Fusarium productores de trichothecene i moniliformina (predominants al Nord d’Europa), amb l’addició de 18 sondes de DNA que permeten identificar les espècies toxigèniques més abundants al Sud d’Europa, les qual produeixen majoritàriament fumonisines. Les sondes de captura han estat dissenyades en base al factor d’elongació translació- 1 alpha (TEF-1alpha). L’anàlisi de les mostres es realitza mitjançant una única PCR que permet amplificar part del TEF-1alpha seguida de la hibridació al xip de Fusarium. Els resultats es visualitzen mitjançant un mètode de detecció colorimètric. El xip de Fusarium desenvolupat pot esdevenir una eina útil i de gran interès per a l’anàlisi de cereals presents en la cadena alimentària.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hi ha diversos mètodes d'anàlisi que duen a terme una agrupació global de la sèries de mostres de microarrays, com SelfOrganizing Maps, o que realitzen agrupaments locals tenint en compte només un subconjunt de gens coexpressats, com Biclustering, entre d'altres. En aquest projecte s'ha desenvolupat una aplicació web: el PCOPSamplecl, és una eina que pertany als mètodes d'agrupació (clustering) local, que no busca subconjunts de gens coexpresats (anàlisi de relacions linials), si no parelles de gens que davant canvis fenotípics, la seva relació d'expressió pateix fluctuacions. El resultats del PCOPSamplecl seràn les diferents distribucions finals de clusters i les parelles de gens involucrades en aquests canvis fenotípics. Aquestes parelles de gens podràn ser estudiades per trobar la causa i efecte del canvi fenotípic. A més, l'eina facilita l'estudi de les dependències entre les diferents distribucions de clusters que proporciona l'aplicació per poder estudiar la intersecció entre clusters o l'aparició de subclusters (2 clusters d'una mateixa agrupació de clusters poden ser subclusters d'altres clusters de diferents distribucions de clusters). L'eina és disponible al servidor: http://revolutionresearch.uab.es/

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El trabajo realizado se divide en dos bloques bien diferenciados, ambos relacionados con el análisis de microarrays. El primer bloque consiste en agrupar las condiciones muestrales de todos los genes en grupos o clústers. Estas agrupaciones se obtienen al aplicar directamente sobre la microarray los siguientes algoritmos de agrupación: SOM,PAM,SOTA,HC y al aplicar sobre la microarray escalada con PC y MDS los siguientes algoritmos: SOM,PAM,SOTA,HC y K-MEANS. El segundo bloque consiste en realizar una búsqueda de genes basada en los intervalos de confianza de cada clúster de la agrupación activa. Las condiciones de búsqueda ajustadas por el usuario se validan para cada clúster respecto el valor basal 0 y respecto el resto de clústers, para estas validaciones se usan los intervalos de confianza. Estos dos bloques se integran en una aplicación web ya existente, el applet PCOPGene, alojada en el servidor: http://revolutionresearch.uab.es.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es tracta d'un estudi retrospectiu de casos de 280 pacients diagnosticats de tumor vesical primari amb un seguiment mínim de 8 anys. S'ha construït un Tissue microarray i mitjançant mètodes semiquantitatius d’inmunohistoquímica es determinarà l'expressió de les molècules MICA (MHC class I chain-related gene A) i del seu receptor NKG2D (Natural-Killer group 2-member D) a nivell tissular, relacionant-lo amb variables anatomopatològiques segons els grups de risc, hàbit tabàquic i sexe. Finalment valorarem l'expressió de MICA/NKG2D com a factor independent de recidiva / progressió tumoral. En la literatura només existeixen 2 treballs que relacionin MICA amb el càncer vesical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La investigació entre les relacions dels nivells d’expressió dels gens aporta molta informació sobre els processos biològics i patològics. Mitjançant la tècnica de les microarrays es possibilita la investigació de les relacions d’expressió de milers de gens a la vegada. La finalitat d’aquest projecte es fent ús de l’aplicatiu web PCOPGene-Net, permetre la identificació dels gens per les relacions d’expressió no lineals que tenen amb la resta de gens i permetre també la identificació de les relacions d’expressió no lineals entre els gens d’una microarray.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la presente memoria se detalla con precisión las diversas fases del trabajo para construir una aplicación web en el servidor http://revolutionresearch.uab.es que permite enriquecer los clusters de la microarray del usuario con información biomédica de una base de datos remota. Los clusters de origen estadístico (o no) de la microarray del usuario se enriquecen a partir de cruzar sus genes marcadores con la base de datos de genes marcadores de microarrays (base de datos remota) con clusters basados en información biomédica. La base de datos de genes marcadores de microarrays ha sido obtenida a partir de la base de datos de GEO Profiles del NCBI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emergent molecular measurement methods, such as DNA microarray, qRTPCR, andmany others, offer tremendous promise for the personalized treatment of cancer. Thesetechnologies measure the amount of specific proteins, RNA, DNA or other moleculartargets from tumor specimens with the goal of “fingerprinting” individual cancers. Tumorspecimens are heterogeneous; an individual specimen typically contains unknownamounts of multiple tissues types. Thus, the measured molecular concentrations resultfrom an unknown mixture of tissue types, and must be normalized to account for thecomposition of the mixture.For example, a breast tumor biopsy may contain normal, dysplastic and cancerousepithelial cells, as well as stromal components (fatty and connective tissue) and bloodand lymphatic vessels. Our diagnostic interest focuses solely on the dysplastic andcancerous epithelial cells. The remaining tissue components serve to “contaminate”the signal of interest. The proportion of each of the tissue components changes asa function of patient characteristics (e.g., age), and varies spatially across the tumorregion. Because each of the tissue components produces a different molecular signature,and the amount of each tissue type is specimen dependent, we must estimate the tissuecomposition of the specimen, and adjust the molecular signal for this composition.Using the idea of a chemical mass balance, we consider the total measured concentrationsto be a weighted sum of the individual tissue signatures, where weightsare determined by the relative amounts of the different tissue types. We develop acompositional source apportionment model to estimate the relative amounts of tissuecomponents in a tumor specimen. We then use these estimates to infer the tissuespecificconcentrations of key molecular targets for sub-typing individual tumors. Weanticipate these specific measurements will greatly improve our ability to discriminatebetween different classes of tumors, and allow more precise matching of each patient tothe appropriate treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hardy-Weinberg law, formulated about 100 years ago, states that under certainassumptions, the three genotypes AA, AB and BB at a bi-allelic locus are expected to occur inthe proportions p2, 2pq, and q2 respectively, where p is the allele frequency of A, and q = 1-p.There are many statistical tests being used to check whether empirical marker data obeys theHardy-Weinberg principle. Among these are the classical xi-square test (with or withoutcontinuity correction), the likelihood ratio test, Fisher's Exact test, and exact tests in combinationwith Monte Carlo and Markov Chain algorithms. Tests for Hardy-Weinberg equilibrium (HWE)are numerical in nature, requiring the computation of a test statistic and a p-value.There is however, ample space for the use of graphics in HWE tests, in particular for the ternaryplot. Nowadays, many genetical studies are using genetical markers known as SingleNucleotide Polymorphisms (SNPs). SNP data comes in the form of counts, but from the countsone typically computes genotype frequencies and allele frequencies. These frequencies satisfythe unit-sum constraint, and their analysis therefore falls within the realm of compositional dataanalysis (Aitchison, 1986). SNPs are usually bi-allelic, which implies that the genotypefrequencies can be adequately represented in a ternary plot. Compositions that are in exactHWE describe a parabola in the ternary plot. Compositions for which HWE cannot be rejected ina statistical test are typically “close" to the parabola, whereas compositions that differsignificantly from HWE are “far". By rewriting the statistics used to test for HWE in terms ofheterozygote frequencies, acceptance regions for HWE can be obtained that can be depicted inthe ternary plot. This way, compositions can be tested for HWE purely on the basis of theirposition in the ternary plot (Graffelman & Morales, 2008). This leads to nice graphicalrepresentations where large numbers of SNPs can be tested for HWE in a single graph. Severalexamples of graphical tests for HWE (implemented in R software), will be shown, using SNPdata from different human populations