75 resultados para SI NANOCRYSTALS

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the study and modeling of the structural and optical properties of rib-loaded waveguides working in the 600-900-nm spectral range. A Si nanocrystal (Si-nc) rich SiO2 layer with nominal Si excess ranging from 10% to 20% was produced by quadrupole ion implantation of Si into thermal SiO2 formed on a silicon substrate. Si-ncs were precipitated by annealing at 1100°C, forming a 0.4-um-thick core layer in the waveguide. The Si content, the Si-nc density and size, the Si-nc emission, and the active layer effective refractive index were determined by dedicated experiments using x-ray photoelectron spectroscopy, Raman spectroscopy, energy-filtered transmission electron microscopy, photoluminescence and m-lines spectroscopy. Rib-loaded waveguides were fabricated by photolithographic and reactive ion etching processes, with patterned rib widths ranging from 1¿to¿8¿¿m. Light propagation in the waveguide was observed and losses of 11dB/cm at 633 and 780 nm were measured, modeled and interpreted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that thickness, optical constants, and details of the multilayer stack, together with the detection setting, strongly influence the photoluminescence spectra of Si nanocrystals embedded in SiO2. Due to multiple reflections of the visible light against the opaque silicon substrate, an interference pattern is built inside the oxide layer, which is responsible for the modifications in the measured spectra. This interference effect is complicated by the depth dependence of (i) the intensity of the excitation laser and (ii) the concentration of the emitting nanocrystals. These variations can give rise to apparent features in the recorded spectra, such as peak shifts, satellite shoulders, and even splittings, which can be mistaken as intrinsic material features. Thus, they can give rise to an erroneous attribution of optical bands or estimate of the average particle size, while they are only optical-geometrical artifacts. We have analyzed these effects as a function of material composition (Si excess fraction) and thickness, and also evaluated how the geometry of the detection setup affects the measurements. To correct the experimental photoluminescence spectra and extract the true spectral shape of the emission from Si nanocrystals, we have developed an algorithm based on a modulation function, which depends on both the multilayer sequence and the experimental configuration. This procedure can be easily extended to other heterogeneous systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear and nonlinear optical properties of silicon suboxide SiOx films deposited by plasma-enhanced chemical-vapor deposition have been studied for different Si excesses up to 24¿at.¿%. The layers have been fully characterized with respect to their atomic composition and the structure of the Si precipitates. Linear refractive index and extinction coefficient have been determined in the whole visible range, enabling to estimate the optical bandgap as a function of the Si nanocrystal size. Nonlinear optical properties have been evaluated by the z-scan technique for two different excitations: at 0.80¿eV in the nanosecond regime and at 1.50¿eV in the femtosecond regime. Under nanosecond excitation conditions, the nonlinear process is ruled by thermal effects, showing large values of both nonlinear refractive index (n2 ~ ¿10¿8¿cm2/W) and nonlinear absorption coefficient (ß ~ 10¿6¿cm/W). Under femtosecond excitation conditions, a smaller nonlinear refractive index is found (n2 ~ 10¿12¿cm2/W), typical of nonlinearities arising from electronic response. The contribution per nanocrystal to the electronic third-order nonlinear susceptibility increases as the size of the Si nanoparticles is reduced, due to the appearance of electronic transitions between discrete levels induced by quantum confinement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlation between the structural (average size and density) and optoelectronic properties [band gap and photoluminescence (PL)] of Si nanocrystals embedded in SiO2 is among the essential factors in understanding their emission mechanism. This correlation has been difficult to establish in the past due to the lack of reliable methods for measuring the size distribution of nanocrystals from electron microscopy, mainly because of the insufficient contrast between Si and SiO2. With this aim, we have recently developed a successful method for imaging Si nanocrystals in SiO2 matrices. This is done by using high-resolution electron microscopy in conjunction with conventional electron microscopy in dark field conditions. Then, by varying the time of annealing in a large time scale we have been able to track the nucleation, pure growth, and ripening stages of the nanocrystal population. The nucleation and pure growth stages are almost completed after a few minutes of annealing time at 1100°C in N2 and afterward the ensemble undergoes an asymptotic ripening process. In contrast, the PL intensity steadily increases and reaches saturation after 3-4 h of annealing at 1100°C. Forming gas postannealing considerably enhances the PL intensity but only for samples annealed previously in less time than that needed for PL saturation. The effects of forming gas are reversible and do not modify the spectral shape of the PL emission. The PL intensity shows at all times an inverse correlation with the amount of Pb paramagnetic centers at the Si-SiO2 nanocrystal-matrix interfaces, which have been measured by electron spin resonance. Consequently, the Pb centers or other centers associated with them are interfacial nonradiative channels for recombination and the emission yield largely depends on the interface passivation. We have correlated as well the average size of the nanocrystals with their optical band gap and PL emission energy. The band gap and emission energy shift to the blue as the nanocrystal size shrinks, in agreement with models based on quantum confinement. As a main result, we have found that the Stokes shift is independent of the average size of nanocrystals and has a constant value of 0.26±0.03 eV, which is almost twice the energy of the Si¿O vibration. This finding suggests that among the possible channels for radiative recombination, the dominant one for Si nanocrystals embedded in SiO2 is a fundamental transition spatially located at the Si¿SiO2 interface with the assistance of a local Si-O vibration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The microstructural and optical analysis of SiO2 layers emitting white luminescence is reported. These structures have been synthesized by sequential Si+ and C+ ion implantation and high-temperature annealing. Their white emission results from the presence of up to three bands in the photoluminescence (PL) spectra, covering the whole visible spectral range. The microstructural characterization reveals the presence of a complex multilayer structure: Si nanocrystals are only observed outside the main C-implanted peak region, with a lower density closer to the surface, being also smaller in size. This lack of uniformity in their density has been related to the inhibiting role of C in their growth dynamics. These nanocrystals are responsible for the band appearing in the red region of the PL spectrum. The analysis of the thermal evolution of the red PL band and its behavior after hydrogenation shows that carbon implantation also prevents the formation of well passivated Si/SiO2 interfaces. On the other hand, the PL bands appearing at higher energies show the existence of two different characteristics as a function of the implanted dose. For excess atomic concentrations below or equal to 10%, the spectra show a PL band in the blue region. At higher doses, two bands dominate the green¿blue spectral region. The evolution of these bands with the implanted dose and annealing time suggests that they are related to the formation of carbon-rich precipitates in the implanted region. Moreover, PL versus depth measurements provide a direct correlation of the green band with the carbon-implanted profile. These PL bands have been assigned to two distinct amorphous phases, with a composition close to elemental graphitic carbon or stoichiometric SiC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have studied the effects of rapid thermal annealing at 1300¿°C on GaN epilayers grown on AlN buffered Si(111) and on sapphire substrates. After annealing, the epilayers grown on Si display visible alterations with craterlike morphology scattered over the surface. The annealed GaN/Si layers were characterized by a range of experimental techniques: scanning electron microscopy, optical confocal imaging, energy dispersive x-ray microanalysis, Raman scattering, and cathodoluminescence. A substantial Si migration to the GaN epilayer was observed in the crater regions, where decomposition of GaN and formation of Si3N4 crystallites as well as metallic Ga droplets and Si nanocrystals have occurred. The average diameter of the Si nanocrystals was estimated from Raman scattering to be around 3¿nm. Such annealing effects, which are not observed in GaN grown on sapphire, are a significant issue for applications of GaN grown on Si(111) substrates when subsequent high-temperature processing is required.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with controlled thickness between two thick SiO2 layers has been fabricated, for four different compositions (x=1, 1.25, 1.5, or 1.75). The structural properties of the SiO x single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO x stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x = 1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymorphous Si is a nanostructured form of hydrogenated amorphous Si that contains a small fraction of Si nanocrystals or clusters. Its thermally induced transformations such as relaxation, dehydrogenation, and crystallization have been studied by calorimetry and evolved gas analysis as a complementary technique. The observed behavior has been compared to that of conventional hydrogenated amorphous Si and amorphous Si nanoparticles. In the temperature range of our experiments (650700 C), crystallization takes place at almost the same temperature in polymorphous and in amorphous Si. In contrast, dehydrogenation processes reflect the presence of different hydrogen states. The calorimetry and evolved gas analysis thermograms clearly show that polymorphous Si shares hydrogen states of both amorphous Si and Si nanoparticles. Finally, the total energy of the main SiH group present in polymorphous Si has been quantified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymorphous Si is a nanostructured form of hydrogenated amorphous Si that contains a small fraction of Si nanocrystals or clusters. Its thermally induced transformations such as relaxation, dehydrogenation, and crystallization have been studied by calorimetry and evolved gas analysis as a complementary technique. The observed behavior has been compared to that of conventional hydrogenated amorphous Si and amorphous Si nanoparticles. In the temperature range of our experiments (650700 C), crystallization takes place at almost the same temperature in polymorphous and in amorphous Si. In contrast, dehydrogenation processes reflect the presence of different hydrogen states. The calorimetry and evolved gas analysis thermograms clearly show that polymorphous Si shares hydrogen states of both amorphous Si and Si nanoparticles. Finally, the total energy of the main SiH group present in polymorphous Si has been quantified

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este artículo se estudia la síntesis de nanocristales semiconductores elementales y compuestos elaborados por implantación iónica en SiO2. En el caso de los nanocristales de Si, se ha desarrollado un estudio sistemático que correlaciona las características de los precipitados y sus propiedades de luminiscencia. Nanopartículas de Ge, que presentan menor emisión pero mayor contraste en Microscopía Electrónica de Transmisión, han sido fabricadas para desarrollar un nuevo método de medida de la densidad de nanocristales en matrices amorfas. Por otro lado, nanopartículas de ZnS dopadas con Mn han sido elaboradas por primera vez con esta técnica, observando la emisión de un pico de luminescencia característico de una transición intra-Mn. Finalmente, se presentan los primeros resultados ópticos de capas coimplantadas con Si+ y C+, que muestran la presencia de tres picos intensos de luminescencia en las regiones roja, verde y azul del espectro visible, que ha sido relacionada con la presencia de diferentes tipos de nanopartículas. Cabe destacar que la emisión simultánea de los tres picos ha permitido la observación de una intensa emisión de luz blanca.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a electroluminescence (EL) study of the Si-rich silicon oxide (SRSO) LEDs with and without Er3+ ions under different polarization schemes: direct current (DC) and pulsed voltage (PV). The power efficiency of the devices and their main optical limitations are presented. We show that under PV polarization scheme, the devices achieve one order of magnitude superior performance in comparison with DC. Time-resolved measurements have shown that this enhancement is met only for active layers in which annealing temperature is high enough (>1000 ◦C) for silicon nanocrystal (Si-nc) formation. Modeling of the system with rate equations has been done and excitation cross-sections for both Si-nc and Er3+ ions have been extracted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon nanocrystals (Si-nc) is an enabling material for silicon photonics, which is no longer an emerging field of research but an available technology with the first commercial products available on the market. In this paper, properties and applications of Si-nc in silicon photonics are reviewed. After a brief history of silicon photonics, the limitations of silicon as a light emitter are discussed and the strategies to overcome them are briefly treated, with particular attention to the recent achievements. Emphasis is given to the visible optical gain properties of Si-nc and to its sensitization effect on Er ions to achieve infrared light amplification. The state of the art of Si-nc applied in a few photonic components is reviewed and discussed. The possibility to exploit Si-nc for solar cells is also presented. in addition, nonlinear optical effects, which enable fast all-optical switches, are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured Si thin films, also referred as polymorphous, were grown by plasma-enhanced chemical vapor deposition. The term "polymorphous" is used to define silicon material that consists of a two-phase mixture of amorphous and ordered Si. The plasma conditions were set to obtain Si thin films from the simultaneous deposition of radical and ordered nanoparticles. Here, a careful analysis by electron transmission microscopy and electron diffraction is reported with the aim to clarify the specific atomic structure of the nanocrystalline particles embedded in the films. Whatever the plasma conditions, the electron diffraction images always revealed the existence of a well-defined crystalline structure different from the diamondlike structure of Si. The formation of nanocrystallinelike films at low temperature is discussed. A Si face-cubic-centered structure is demonstrated here in nanocrystalline particles produced in low-pressure silane plasma at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’aparició de la demanda d’un nou tipus de professor de primària i secundària, que ha d’afegir a les competències professionals fins ara exigibles de tot bon professor, la capacitat d’ensenyar la seva matèria a través d’una llengua estrangera en aules denominades AICLE (Aprenentatge Integrat de Continguts i Llengua) en Semiimmersió (SI) justifica el treball desenvolupat en el marc del projecte 2006ARIE10011. Els formadors del Màster en Formació Inicial del Professorat de Secundària (FIPS) de la UAB (especialitats d’anglès, ciències socials i ciències naturals) i del Curs de Qualificació Pedagògica (CQP) de la UdL (especialitat d’anglès) han col•laborat en el disseny d’un component formatiu en tècniques d’ensenyament AICLE (CLILC), com a constituent del futur Màster Oficial que habilitarà per al exercici de la professió Professor d’Educació Secundaria Obligatòria i Batxillerat (ORDEN ECI/3858/2007, de 27 desembre; BOE 312)(...)