9 resultados para S1 glycoprotein
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We prove rigidity and vanishing theorems for several holomorphic Euler characteristics on complex contact manifolds admitting holomorphic circle actions preserving the contact structure. Such vanishings are reminiscent of those of LeBrun and Salamon on Fano contact manifolds but under a symmetry assumption instead of a curvature condition.
Resumo:
A monoclonal antibody CC92 (IgM), raised against a fraction of rat liver enriched in Golgi membranes, recognizes a novel Endo H-resistant 74-kD membrane glycoprotein (gp74). The bulk of gp74 is confined to the cis-Golgi network (CGN). Outside the Golgi gp74 is found in tubulovesicular structures and ER foci. In cells incubated at 37 degrees C the majority of gp74 is segregated from the intermediate compartment (IC) marker p58. However, in cells treated with organelle perturbants such as low temperature, BFA, and [AIF4]- the patterns of the two proteins become indistinguishable. Both proteins are retained in the Golgi complex at 20 degrees C and in the IC at 15 degrees C. Incubation of cells with BFA results in relocation of gp74 to p58 positive IC elements. [AIF4]- induces the redistribution of gp74 from the Golgi to p58-positive vesicles and does not retard the translocation of gp74 to IC elements in cells treated with BFA. Disruption of microtubules by nocodazol results in the rapid disappearance of the Golgi elements stained by gp74 and redistribution of the protein into vesicle-like structures. The responses of gp74 to cell perturbants are in sharp contrast with those of cis/middle and trans-Golgi resident proteins whose location is not affected by low temperatures or [AIF4]-, are translocated to the ER upon addition of BFA, and stay in slow disintegrating Golgi elements in cells treated with nocodazol. The results suggest that gp74 is an itinerant protein that resides most of the time in the CGN and cycles through the ER/IC following the pathway used by p58.
Resumo:
The oligodendrocyte myelin glycoprotein is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the CNS. Attempts have been made to identify the functions of the myelin-associated inhibitory proteins (MAIPs) after axonal lesion or in neurodegeneration. However, the developmental roles of some of these proteins and their receptors remain elusive. Recent studies indicate that NgR1 and the recently discovered receptor PirB restrict cortical synaptic plasticity. However, the putative factors that trigger these effects are unknown. Since Nogo-A is mostly associated with the endoplasmic reticulum and MAG appears late during development, the putative participation of OMgp should be considered. Here we examine the pattern of development of OMgp immunoreactive elements during mouse telencephalic development. OMgp immunoreactivity in the developing cortex follows the establishment of the thalamo-cortical barrel-field. At cellular level, we located OMgp neuronal membranes in dendrites and axons as well as in brain synaptosome fractions and axon varicosities. Lastly, the analysis of the barrel-field in OMgp-deficient mice revealed that although thalamo-cortical connections were formed, their targeting in layer IV was altered and numerous axons ectopically invaded layer II-III. Our data support the idea that early-expressed MAIPs play an active role during development and point to OMgp participating in thalamo-cortical connections.
Resumo:
P-glycoprotein (Pgp), a protein codified by Multi Drug Resistance (MDR1) gene, has a detoxifying function and might influence the toxicity and pharmacokinetics and pharmacodynamics of drugs. Sampling strategies to improve Pgp studies could be useful to optimize the sensitivity and the reproducibility of efflux assays. This study aimed to compare Pgp expression and efflux activity by measuring Rhodamine123 (Rh123) retention in lymphocytes stored under different conditions, in order to evaluate the potential utility of any of the storing conditions in Pgp functionality. Our results show no change in protein expression of Pgp by confocal studies and Western blotting, nor changes at the mRNA level (qRT-PCR). No differences in Rh123 efflux by Pgp activity assays were found between fresh and frozen lymphocytes after 24 hours of blood extraction, using either of the two Pgp specific inhibitors (VP and PSC833). Different working conditions in the 24 hours post blood extraction do not affect Rh123 efflux. These results allow standardization of Pgp activity measurement in different individuals with different timing of blood sampling and in different geographic areas. _______________
Resumo:
El GB virus C (GBV-C) o virus de l'hepatitis G (HGV) es un virus format per una única cadena de RNA que pertany a la familia Flaviviridae. En els últims anys, s'han publicat nombrosos treballs en els quals s'associa la coinfecció del GBV-C i del virus de la immunodeficiència humana (VIH) amb una menor progressió de l'esmentada malaltia així com amb una major supervivència dels pacients una vegada que la SIDA s'ha desenvolupat. El mecanisme pel qual el virus GBV-C/HGV exerceix un “efecte protector” en els pacients amb VIH encara no està descrit. L’estudi de la interacció entre els virus GBVC/HGV i VIH podria donar lloc al desenvolupament de nous agents terapèutics per al tractament de la SIDA.Treballs recents mostren com la capacitat inhibitòria del virus del GBV-C/HGV és deguda a la seva glicoproteina estructural E2. S’ha vist que aquesta proteina seria capaç d’inhibir la primera fase de replicació de VIH, així com la unió i la fusió amb les membranes cel•lulars. Sobre la base d’aquests estudis, l’objectiu d’aquest treball ha estat seleccionar inhibidors del pèptid de fusió del VIH utilitzant pèptids sintètics de la proteina E2 del GBV-C/HGV. El treball realitzat ha consistit en estudiar, utilitzant assajos biofísics de leakage i de lipid mixing, la capacitat dels pèptids de la proteina estructural del virus del GBV-C/HGV per inhibir la interacció i el procés de desestabilització de membranes induïdes pel pèptid de fusió de la glicoproteina de l’embolcall, GP41, del VIH. Aquests assajos, com es descriu en treballs anteriors, han resultat útils per a la selecció i la identificació de compostos amb activitat específica anti-GP41. Es pot afirmar que efectivament els pèptids seleccionats de la proteina E2 del virus del GBV-C/HGV inhibeixen l’activitat del pèptid de fusió del VIH probablement com a consequència d’un canvi conformacional en aquest darrer.
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants
Resumo:
Background: The GENCODE consortium was formed to identify and map all protein-coding genes within the ENCODE regions. This was achieved by a combination of initial manualannotation by the HAVANA team, experimental validation by the GENCODE consortium and a refinement of the annotation based on these experimental results.Results: The GENCODE gene features are divided into eight different categories of which onlythe first two (known and novel coding sequence) are confidently predicted to be protein-codinggenes. 5’ rapid amplification of cDNA ends (RACE) and RT-PCR were used to experimentallyverify the initial annotation. Of the 420 coding loci tested, 229 RACE products have beensequenced. They supported 5’ extensions of 30 loci and new splice variants in 50 loci. In addition,46 loci without evidence for a coding sequence were validated, consisting of 31 novel and 15putative transcripts. We assessed the comprehensiveness of the GENCODE annotation byattempting to validate all the predicted exon boundaries outside the GENCODE annotation. Outof 1,215 tested in a subset of the ENCODE regions, 14 novel exon pairs were validated, only twoof them in intergenic regions.Conclusions: In total, 487 loci, of which 434 are coding, have been annotated as part of theGENCODE reference set available from the UCSC browser. Comparison of GENCODEannotation with RefSeq and ENSEMBL show only 40% of GENCODE exons are contained withinthe two sets, which is a reflection of the high number of alternative splice forms with uniqueexons annotated. Over 50% of coding loci have been experimentally verified by 5’ RACE forEGASP and the GENCODE collaboration is continuing to refine its annotation of 1% humangenome with the aid of experimental validation.
Resumo:
Background: We present the results of EGASP, a community experiment to assess the state-ofthe-art in genome annotation within the ENCODE regions, which span 1% of the human genomesequence. The experiment had two major goals: the assessment of the accuracy of computationalmethods to predict protein coding genes; and the overall assessment of the completeness of thecurrent human genome annotations as represented in the ENCODE regions. For thecomputational prediction assessment, eighteen groups contributed gene predictions. Weevaluated these submissions against each other based on a ‘reference set’ of annotationsgenerated as part of the GENCODE project. These annotations were not available to theprediction groups prior to the submission deadline, so that their predictions were blind and anexternal advisory committee could perform a fair assessment.Results: The best methods had at least one gene transcript correctly predicted for close to 70%of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into accountalternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotidelevel, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programsrelying on mRNA and protein sequences were the most accurate in reproducing the manuallycurated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could beverified.Conclusions: This is the first such experiment in human DNA, and we have followed thestandards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe theresults presented here contribute to the value of ongoing large-scale annotation projects and shouldguide further experimental methods when being scaled up to the entire human genome sequence.