46 resultados para Rotational inertia
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We introduce wage setting via efficiency wages in the neoclassical one-sector growth model to study the growth effects of wage inertia. We compare the dynamic equilibrium of an economy with wage inertia with the equilibrium of an economy without wage inertia. We show that wage inertia affects the long run employment rate and that the transitional dynamics of the main economic variables will be different because wages are a state variable when wage inertia is introduced. In particular, we show non-monotonic transitions in the economy with wage inertia that do not arise in the economy with flexible wages. We also study the growth effects of permanent technological and fiscal policy shocks in these two economies. During the transition, the growth effects of technological shocks obtained when wages exhibit inertia may be the opposite from the ones obtained when wages are flexible. In the long run, these technological shocks may have long run effects if there is wage inertia. We also show that the growth effects of fiscal policies will be delayed when there is wage inertia.
Resumo:
Patient-specific simulations of the hemodynamics in intracranial aneurysms can be constructed by using image-based vascular models and CFD techniques. This work evaluates the impact of the choice of imaging technique on these simulations
Resumo:
Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D + t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D + t measured projection sequence and the corresponding forward projections of the deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.
Resumo:
This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over onecardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneousmorphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantomexperiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.
Resumo:
Professional services require certain organizational patterns in order to avoid information asymmetries and external effects. These same patterns are used within production structures involving various degrees of monopoly. However, competitive restraints are justified today only when substantial external effects are clearly present, whereas information asymmetries hardly justify such restraints because reputational investments have become widespread in the economy and are relatively efficient in overcoming such asymmetries. As a consequence, innovation in the production of externalities can make competitive constraints unnecessary.
Resumo:
We study the problem of front propagation in the presence of inertia. We extend the analytical approach for the overdamped problem to this case, and present numerical results to support our theoretical predictions. Specifically, we conclude that the velocity and shape selection problem can still be described in terms of the metastable, nonlinear, and linear overdamped regimes. We study the characteristic relaxation dynamics of these three regimes, and the existence of degenerate (¿quenched¿) solutions.
Resumo:
The sameness between the inertial mass and the gravitational mass is an assumption and not a consequence of the equivalent principle is shown. In the context of the Sciama’s inertia theory, the sameness between the inertial mass and the gravitational mass is discussed and a certain condition which must be experimentally satisfied is given. The inertial force proposed by Sciama, in a simple case, is derived from the Assis’ inertia theory based in the introduction of a Weber type force. The origin of the inertial force is totally justified taking into account that the Weber force is, in fact, an approximation of a simple retarded potential, see [18, 19]. The way how the inertial forces are also derived from some solutions of the general relativistic equations is presented. We wonder if the theory of inertia of Assis is included in the framework of the General Relativity. In the context of the inertia developed in the present paper we establish the relation between the constant acceleration a0 , that appears in the classical Modified Newtonian Dynamics (M0ND) theory, with the Hubble constant H0 , i.e. a0 ≈ cH0 .
Resumo:
[cat] El propòsit d'aquest article és introduir una mercat de treball no competitiu i atur en el model de creixement amb taxes d'estalvi exògenes que es pot trobar en els llibres de text de creixement (Sala‐i‐Martín, 2000; Barro and Sala‐i‐Martín, 2003; Romer, 2006). Primer, derivem un marc general amb una funció de producció neoclàssica per analitzar la relació entre creixement i ocupació. Utilitzem aquest marc per estudiar les dinàmiques conjuntes del creixement i l'ocupació sota diferents regles de fixació salarial.
Resumo:
[cat] El propòsit d'aquest article és introduir una mercat de treball no competitiu i atur en el model de creixement amb taxes d'estalvi exògenes que es pot trobar en els llibres de text de creixement (Sala‐i‐Martín, 2000; Barro and Sala‐i‐Martín, 2003; Romer, 2006). Primer, derivem un marc general amb una funció de producció neoclàssica per analitzar la relació entre creixement i ocupació. Utilitzem aquest marc per estudiar les dinàmiques conjuntes del creixement i l'ocupació sota diferents regles de fixació salarial.
Resumo:
We introduce wage setting via efficiency wages in the neoclassical one-sector growth model to study the growth effects of wage inertia. We compare the dynamic equilibrium of an economy with wage inertia with the equilibrium of an economy without it. We show that wage inertia affects the long run employment rate and that the transitional dynamics of the main economic variables will be different because wages are a state variable when wage inertia is introduced. In particular, we show that the model with wage inertia can explain some growth patterns that cannot be explained when wages are flexible. We also study the growth effects of permanent technological and fiscal policy shocks in these two economies.
Resumo:
We compute the shift in the frequency of the spin resonance in a solid that rotates in the field of a circularly polarized electromagnetic wave. Electron-spin resonance, nuclear magnetic resonance, and ferromagnetic resonance are considered. We show that contrary to the case of the rotating LC circuit, the shift in the frequency of the spin resonance has strong dependence on the symmetry of the receiver. The shift due to rotation occurs only when rotational symmetry is broken by the anisotropy of the gyromagnetic tensor, by the shape of the body or by magnetocrystalline anisotropy. General expressions for the resonance frequency and power absorption are derived and implications for experiment are discussed.
BioSuper: A web tool for the superimposition of biomolecules and assemblies with rotational symmetry
Resumo:
Background Most of the proteins in the Protein Data Bank (PDB) are oligomeric complexes consisting of two or more subunits that associate by rotational or helical symmetries. Despite the myriad of superimposition tools in the literature, we could not find any able to account for rotational symmetry and display the graphical results in the web browser. Results BioSuper is a free web server that superimposes and calculates the root mean square deviation (RMSD) of protein complexes displaying rotational symmetry. To the best of our knowledge, BioSuper is the first tool of its kind that provides immediate interactive visualization of the graphical results in the browser, biomolecule generator capabilities, different levels of atom selection, sequence-dependent and structure-based superimposition types, and is the only web tool that takes into account the equivalence of atoms in side chains displaying symmetry ambiguity. BioSuper uses ICM program functionality as a core for the superimpositions and displays the results as text, HTML tables and 3D interactive molecular objects that can be visualized in the browser or in Android and iOS platforms with a free plugin. Conclusions BioSuper is a fast and functional tool that allows for pairwise superimposition of proteins and assemblies displaying rotational symmetry. The web server was created after our own frustration when attempting to superimpose flexible oligomers. We strongly believe that its user-friendly and functional design will be of great interest for structural and computational biologists who need to superimpose oligomeric proteins (or any protein). BioSuper web server is freely available to all users at http://ablab.ucsd.edu/BioSuper webcite.
Resumo:
We study the relation between public capital, employment and growth under different assumptions concerning wage formation. We show that public capital increases economic growth, and that, if there is wage inertia, employment positively depends on both economic growth and public capital.
Resumo:
We develop a growth model with unemployment due to imperfections in the labor market. In this model, wage inertia and balanced budget rules cause a complementarity between capital and employment capable of explaining the existence of multiple equilibrium paths. Hysteresis is viewed as the result of a selection between these diferent equilibrium paths. We use this model to argue that, in contrast to the US, those fiscal policies followed by most of the European countries after the shocks of the 1970s may have played a central role in generating hysteresis.