3 resultados para Restriction-modification systems
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Through the history of Electrical Engineering education, vectorial and phasorial diagrams have been used as a fundamental learning tool. At present, computational power has replaced them by long data lists, the result of solving equation systems by means of numerical methods. In this sense, diagrams have been shifted to an academic background and although theoretically explained, they are not used in a practical way within specific examples. This fact may be against the understanding of the complex behavior of the electrical power systems by students. This article proposes a modification of the classical Perrine-Baum diagram construction to allowing both a more practical representation and a better understanding of the behavior of a high-voltage electric line under different levels of load. This modification allows, at the same time, the forecast of the obsolescence of this behavior and line’s loading capacity. Complementary, we evaluate the impact of this tool in the learning process showing comparative undergraduate results during three academic years
Resumo:
Amplified ribosomal DNA restriction analysis (ARDRA) is a simple method based on restriction endonuclease digestion of the amplified bacterial 16S rDNA. In this study we have evaluated the suitability of this method to detect differences in activated sludge bacterial communities fed on domestic or industrial wastewater, and subject to different operational conditions. The ability of ARDRA to detect these differences has been tested in modified Ludzack-Ettinger (MLE) configurations. Samples from three activated sludge wastewater treatment plants (WWTPs) with the MLE configuration were collected for both oxic and anoxic reactors, and ARDRA patterns using double enzyme digestions AluI+MspI were obtained. A matrix of Dice similarity coefficients was calculated and used to compare these restriction patterns. Differences in the community structure due to influent characteristics and temperature could be observed, but not between the oxic and anoxic reactors of each of the three MLE configurations. Other possible applications of ARDRA for detecting and monitoring changes in activated sludge systems are also discussed
Resumo:
Production of antimicrobial peptides in plants constitutes an approach for obtaining them in high amounts. However, their heterologous expression in a practical and efficient manner demands some structural requirements such as a minimum size, the incorporation of retention signals to assure their accumulation in specific tissues, and the presence of protease cleavage amino acids and of target sequences to facilitate peptide detection. Since any sequence modification may influence the biological activity, peptides that will be obtained from the expression must be screened prior to the synthesis of the genes for plant transformation. We report herein a strategy for the modification of the antimicrobial undecapeptide BP100 that allowed the identification of analogues that can be expressed in plants and exhibit optimum biological properties. We prepared 40 analogues obtained by incorporating repeated units of the antimicrobial undecapeptide, fragments of natural peptides, one or two AGPA hinges, a Gly or Ser residue at the N-terminus, and a KDEL fragment and/or the epitope tag54 at the C-terminus. Their antimicrobial, hemolytic and phytotoxic activities, and protease susceptibility were evaluated. Best sequences contained a magainin fragment linked to the antimicrobial undecapeptide through an AGPA hinge. Moreover, since the presence of a KDEL unit or of tag54 did not influence significantly the biological activity, these moieties can be introduced when designing compounds to be retained in the endoplasmic reticulum and detected using a complementary epitope. These findings may contribute to the design of peptides to be expressed in plants