13 resultados para Receptors, Interleukin-5
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We have compared by immunocytochemistry and immunoblotting the expression and distribution of adhesion molecules participating in cell-matrix and cell-cell interactions during embryonic development and regeneration of rat liver. Fibronectin and the fibronectin receptor, integrin alpha 5 beta 1, were distributed pericellularly and expressed at a steady level during development from the 16th day of gestation and in neonate and adult liver. AGp110, a nonintegrin fibronectin receptor was first detected on the 17th day of gestation in a similar, nonpolarized distribution on parenchymal cell surfaces. At that stage of development haemopoiesis is at a peak in rat liver and fibronectin and receptors alpha 5 beta 1 and AGp110 were prominent on the surface of blood cell precursors. During the last 2 d of gestation (20th and 21st day) hepatocytes assembled around lumina. AGp110 was initially depolarized on the surface of these acinar cells but then confined to the lumen and to newly-formed bile canaliculi. At birth, a marked increase occurred in the canalicular expression of AGp110 and in the branching of the canalicular network. Simultaneously, there was enhanced expression of ZO-1, a protein component of tight junctions. On the second day postpartum, presence of AGp110 and of protein constituents of desmosomes and intermediate junctions, DGI and E-cadherin, respectively, was notably enhanced in cellular fractions insoluble in nonionic detergents, presumably signifying linkage of AGp110 with the cytoskeleton and assembly of desmosomal and intermediate junctions. During liver regeneration after partial hepatectomy, AGp110 remained confined to apical surfaces, indicating a preservation of basic polarity in parenchymal cells. A decrease in the extent and continuity of the canalicular network occurred in proliferating parenchyma, starting 24 h after resection in areas close to the terminal afferent blood supply of portal veins and spreading to the rest of the liver within the next 24 h. Distinct acinar structures, similar to the ones in prenatal liver, appeared at 72 h after hepatectomy. Restoration of the normal branching of the biliary tree commenced at 72 h. At 7 d postoperatively acinar formation declined and one-cell-thick hepatic plates, as in normal liver, were observed.
Resumo:
Interaction between brain endocannabinoid (EC) and serotonin (5-HT) systems was investigated by examining 5-HT-dependent behavioural and biochemical responses in CB1 receptor knockout mice. CB1 knockout animals exhibited a significant reduction in the induction of head twitches and paw tremor by the 5-HT2A receptor selective agonist ()DOI, as well as a reduced hypothermic response following administration of the 5-HT1A receptor agonist (±)-8-OH-DPAT. Additionally, exposure to the tail suspension test induced enhanced despair responses in CB1 knockout mice. However, the tricyclic antidepressant imipramine and the 5-HT selective reuptake inhibitor fluoxetine induced similar decreases in the time of immobility in the tail suspension test in CB1 receptor knockout and wild-type mice. No differences were found between both genotypes with regard to 5-HT2A receptor and 5-HT1A receptors levels, measured by autoradiography in different brain areas. However, a significant decrease in the ability of the 5-HT1A receptor agonist (±)-8-OH-DPAT to stimulate 35SGTPS binding was detected in the hippocampal CA1 area of CB1 receptor knockout mice. This study provides evidence that CB1 receptors are involved in the regulation of serotonergic responses mediated by 5-HT2A and 5-HT1A receptors, and suggests that a reduced coupling of 5-HT1A receptors to Gi/o proteins in the hippocampus might be involved in these effects.
Resumo:
Treball de recerca realitzat per alumnes d’ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l’any 2008. Les alteracions del receptor de dopamina D2 són responsables de molts desordres neuronals que condueixen a malalties com el Parkinson, l’esquizofrènia i l’addicció a drogues. L’objectiu ha estat determinar quina espècie animal és més adient per substituir el teixit humà en l’estudi d’aquest receptor. Per dur a terme aquest estudi s’ha treballat amb nou espècies animals diferents en les quals s’ha relacionat, en funció de l’espècie, la concentració de receptor, la seva afinitat pels lligands agonistes i antagonistes, la seva relació evolutiva... El mètode més utilitzat per a la determinació i la quantificació de receptors hormonals als laboratoris d’investigació de les indústries farmacèutiques és la unió de radiolligands a membranes. Entre aquests experiments, els més emprats són els de desplaçament, en els quals el fàrmac no marcat competeix i desplaça el radiolligand dels centres d’unió del receptor i, tot seguit, es mesura la radioactivitat de la mostra amb un comptador de radioactivitat. Per fer aquest treball també ha calgut calcular la concentració de proteïnes per espectrofotometria i emprar tècniques d’homogeneïtzació i centrifugació. Després d’haver analitzat la concentració, l’afinitat i la relació filogenètica del receptor D2 de cada una de les espècies analitzades, es pot concloure que l’espècie ideal per estudiar aquest receptor, quan no es disposa de mostra humana, és un altre mamífer, i entre els estudiats es consideraria millor la vaca, ja que permet obtenir una gran quantitat de teixit, presenta un contingut apreciable de receptor i la seva afinitat per la dopamina és molt elevada.
Resumo:
Investigación producida a partir de una estancia en la University of Sidney, Australia, entre octubre del 2008 y enero del 2009. Se ha desarrollado el proyecto titulado "Papel de la interleucina 6 (IL6) en la regulación de la expresión de Osteopontina (OPN) y de CD44 tras axotomía del nervio facial". Tras efectuar una transección del nervio facial, se indujo una reactividad glial en el núcleo facial (NF) localizado en el tronco cerebral, utilizando ratones transgénicos que sobrexpresan IL6 bajo promotor GFAP (tg GFAP-IL6), es decir selectivamente en astrocitos. Se han utilizado técnicas histoquímicas e inmunohistoquímicas, así como también se ha completado el estudio utilizando análisis de RPA, western blotting y citometría de flujo para la identificación de poblaciones celulares. Los resultados obtenidos indican que la OPN se expresa constitutivamente en las neuronas del NF. Tras axotomía del nervio facial, la expresión de OPN y CD44 incrementa en los ratones WT, mientras que en los tg GFAP-IL6 disminuye significativamente, sugiriendo que la IL6 podría estar involucrada en la modulación de la expresión de ambas moléculas. Sin embargo, no se ha visto diferencias en otros receptores de OPN como la integrina Alpha-5. La ctometría de flujo corroboró algunos de los resultados histológicos sobre la reactividad microglial y permitió concluir que la proporción de microglía activada (CD11b+/CD45+mid) y macrófagos (CD11b+/CD45+high) que expresan CD44 incrementa en in los tg GFAP-IL6 versus WT donde la mayor parte de microglia activada mostraba un perfil CD11b+/CD45+low.
Resumo:
Amb l’objectiu d’orientar una futura tesi doctoral, aquest treball de recerca planteja una investigació sobre audiència televisiva a Catalunya. A partir de les aportacions fetes pels investigadors del camp, tant a nivell empíric com teòric, es dissenya una metodologia d’anàlisi del text i la recepció per tractar de donar resposta a un fenomen particular: la poca presència de públiccastellanoparlant en l’audiència de TV3, la televisió pública catalana. Sota elparaigües del construccionisme social moderat, la recerca dissenya unes hipòtesis relacionades amb la distància percebuda respecte de la cadena, el gust televisiu i les característiques enunciatives dels missatges televisius, i planteja donar-hi resposta a partir de l’anàlisi de l’enunciació de les principals cadenes generalistes que emeten a Catalunya, per una banda, i amb la realització d’entrevistes i grups de discussió amb una mostra d’espectadors, per l’altra.
Resumo:
The ascending midbrain 5-HT neurons to the forebrain may be dysregulated in depression and have a reduced trophic support. With in situ proximity ligation assay (PLA) and supported by coimmunoprecipitation and colocation of the FGFR1 and 5-HT1A immunoreactivities in the midbrain raphe cells, evidence for the existence of FGFR1-5-HT1A receptor heterocomplexes in the dorsal and median raphe nuclei of the Sprague Dawley rat as well as in the rat medullary raphe RN33B cells has been obtained. Especially after combined FGF-2 and 8-OH-DPAT treatment, a marked and significant increase in PLA clusters was found in the RN33B cells. Similar results were reached with the FRET technique in HEK293T cells, where TM-V of the 5HT1A receptor was found to be part of the receptor interface. The combined treatment with FGF-2 and the 5-HT1A agonist also synergistically increased FGFR1 and ERK1/2 phosphorylation in the raphe midline area of the midbrain and the RN33B cells as well as their differentiation, as seen from development of the increased number and length of extensions per cell and their increased 5-HT immunoreactivity. These signaling and differentiation events were dependent on the receptor interface since they were blocked by incubation with TM-V but not by TM-II. Together, the results indicate that the 5-HT1A autoreceptors by being part of a FGFR1-5-HT1A receptor heterocomplex in the midbrain raphe 5-HT nerve cells appear to have a trophic role in the central 5-HT neuron systems in addition to playing a key role in reducing the firing of these neurons
Resumo:
We have investigated the effect of nicotinic receptor ligands in the behavioral sensitization (hyperlocomotion) and rewarding properties (conditioned place preference paradigm, CPP) of 3,4-methylenedioxy-methamphetamine (MDMA) in mice. Each animal received intraperitoneal pretreatment with either saline, dihydro-β-erythroidine (DHβE, 1 mg/kg) or varenicline (VAR, 0.3 mg/kg), 15 min prior to subcutaneous saline or MDMA (5 mg/kg), for 10 consecutive days. On day 1, both DHβE and VAR inhibited the MDMA-induced hyperlocomotion. After 10 days of treatment, MDMA induced a hyperlocomotion that was not reduced (rather enhanced) in antagonist-pretreated animals. This early hyperlocomotion was accompanied by a significant increase in heteromeric nicotinic receptors in cortex that was not blocked by DHβE or VAR. Behavioral sensitization to MDMA was highest 2 weeks after the discontinuation of MDMA treatment. This additional increase in sensitivity was prevented in animals pretreated with DHβE or VAR. At this time, MDMA-treated mice showed a significant increase in heteromeric receptors in cortex that was prevented by DHβE and VAR. An involvement of α7 nicotinic receptors in this effect is ruled out. MDMA (10 mg/kg) induced positive CPP that was abolished by DHβE (2 mg/kg) and VAR (2 mg/kg). Moreover, chronic nicotine pretreatment (2 mg/kg, ip, b.i.d., for 14 days) caused MDMA, administered at a low dose (3 mg/kg), to induce CPP, which would otherwise not occur. Finally, present results point out that heteromeric nicotinic receptors are involved in locomotor sensitization and addictive potential induced by MDMA. Thus, varenicline might be a useful drug to treat both tobacco and MDMA abuse at once.
Resumo:
We have investigated the effect of nicotinic receptor ligands in the behavioral sensitization (hyperlocomotion) and rewarding properties (conditioned place preference paradigm, CPP) of 3,4-methylenedioxy-methamphetamine (MDMA) in mice. Each animal received intraperitoneal pretreatment with either saline, dihydro-β-erythroidine (DHβE, 1 mg/kg) or varenicline (VAR, 0.3 mg/kg), 15 min prior to subcutaneous saline or MDMA (5 mg/kg), for 10 consecutive days. On day 1, both DHβE and VAR inhibited the MDMA-induced hyperlocomotion. After 10 days of treatment, MDMA induced a hyperlocomotion that was not reduced (rather enhanced) in antagonist-pretreated animals. This early hyperlocomotion was accompanied by a significant increase in heteromeric nicotinic receptors in cortex that was not blocked by DHβE or VAR. Behavioral sensitization to MDMA was highest 2 weeks after the discontinuation of MDMA treatment. This additional increase in sensitivity was prevented in animals pretreated with DHβE or VAR. At this time, MDMA-treated mice showed a significant increase in heteromeric receptors in cortex that was prevented by DHβE and VAR. An involvement of α7 nicotinic receptors in this effect is ruled out. MDMA (10 mg/kg) induced positive CPP that was abolished by DHβE (2 mg/kg) and VAR (2 mg/kg). Moreover, chronic nicotine pretreatment (2 mg/kg, ip, b.i.d., for 14 days) caused MDMA, administered at a low dose (3 mg/kg), to induce CPP, which would otherwise not occur. Finally, present results point out that heteromeric nicotinic receptors are involved in locomotor sensitization and addictive potential induced by MDMA. Thus, varenicline might be a useful drug to treat both tobacco and MDMA abuse at once.
Resumo:
Nicotine (NIC), the main psychostimulant compound of smoked tobacco, exerts its effects through activation of central nicotinic acetylcholine receptors (nAChR), which become up-regulated after chronic administration. Recent work has demonstrated that the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) has affinity for nAChR and also induces up-regulation of nAChR in PC 12 cells. Tobacco and MDMA are often consumed together. In the present work we studied the in vivo effect of a classic chronic dosing schedule of MDMA in rats, alone or combined with a chronic schedule of NIC, on the density of nAChR and on serotonin reuptake transporters. MDMA induced significant decreases in [3H]paroxetine binding in the cortex and hippocampus measured 24 h after the last dose and these decreases were not modified by the association with NIC. In the prefrontal cortex, NIC and MDMA each induced significant increases in [3H]epibatidine binding (29.5 and 34.6%, respectively) with respect to saline-treated rats, and these increases were significantly potentiated (up to 72.1%) when the two drugs were associated. Also in this area, [3H]methyllycaconitine binding was increased a 42.1% with NIC + MDMA but not when they were given alone. In the hippocampus, MDMA potentiated the a7 regulatory effects of NIC (raising a 25.5% increase to 52.5%) but alone was devoid of effect. MDMA had no effect on heteromeric nAChR in striatum and a coronal section of the midbrain containing superior colliculi, geniculate nuclei, substantia nigra and ventral tegmental area. Specific immunoprecipitation of solubilised receptors suggests that the up-regulated heteromeric nAChRs contain a4 and b2 subunits. Western blots with specific a4 and a7 antibodies showed no significant differences between the groups, indicating that, as reported for nicotine, up-regulation caused by MDMA is due to post-translational events rather than increased receptor synthesis.
Resumo:
Inflammation is involved in cardiovascular diseases. Some studies have found that the Mediterranean diet (MD) can reduce serum concentrations of inflammation markers. However, none of these studies have analyzed the influence of genetic variability in such a response. Our objective was to study the effect of the -765G.C polymorphism in the cyclooxygenase-2 (COX-2) gene and the -174G.C polymorphism in the interleukin-6 (IL-6) gene on serum concentrations of IL-6, C-reactive protein, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 as well as their influence on the response toa nutritional interventionwithMD.An intervention study ina high cardiovascular riskMediterranean population (314 men and 407 women) was undertaken. Participants were randomly assigned to consume a low-fat control diet or a MD supplementedwith virgin olive oil ornuts.Measureswereobtained at baseline and after a 3-mointervention period.At baseline, the COX-2 -765G.C polymorphismwas associated with lower serum IL-6 (5.85 6 4.82 in GG vs. 4.74 6 4.14 ng/L in C-allele carriers; P ¼ 0.002) and ICAM-1 (265.8 6 114.8 in GG vs. 243.0 6 107.1 mg/L in C-carriers; P ¼ 0.018) concentrations. These differences remained significant aftermultivariate adjustment. The IL-6 -174G.C polymorphism was associatedwith higher (CC vs. G-carriers) serumICAM-1concentrations in bothmenandwomenandwithhigherserumIL-6 concentrations inmen.Following the dietary intervention, no significant gene x diet interactions were found. In conclusion, although COX-2 -765G.C and IL-6 -174G.C polymorphismswere associatedwith inflammation, consuming aMD(either supplemented with virgin olive oil or nuts) reduced the concentration of inflammation markers regardless of these polymorphisms.
Resumo:
Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly 'tuned,' can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P(1),P(4)-diadenosine tetraphosphate (Ap4A), and P(1),P(5)-diadenosine pentaphosphate (Ap5A) are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N(6)-(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine (CF101) have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases) can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.
Resumo:
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen component of Ayahuasca, an Amazonian beverage traditionally used for ritual, religious and healing purposes that is being increasingly used for recreational purposes in US and Europe. 5MeO-DMT is of potential interest for schizophrenia research owing to its hallucinogenic properties. Two other psychotomimetic agents, phencyclidine and 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), markedly disrupt neuronal activity and reduce the power of low frequency cortical oscillations (<4 Hz, LFCO) in rodent medial prefrontal cortex (mPFC). Here we examined the effect of 5-MeO-DMT on cortical function and its potential reversal by antipsychotic drugs. Moreover, regional brain activity was assessed by blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). 5-MeO-DMT disrupted mPFC activity, increasing and decreasing the discharge of 51 and 35% of the recorded pyramidal neurons, and reducing (−31%) the power of LFCO. The latter effect depended on 5-HT1A and 5-HT2A receptor activation and was reversed by haloperidol, clozapine, risperidone, and the mGlu2/3 agonist LY379268. Likewise, 5-MeO-DMT decreased BOLD responses in visual cortex (V1) and mPFC. The disruption of cortical activity induced by 5-MeO-DMT resembles that produced by phencyclidine and DOI. This, together with the reversal by antipsychotic drugs, suggests that the observed cortical alterations are related to the psychotomimetic action of 5-MeO-DMT. Overall, the present model may help to understand the neurobiological basis of hallucinations and to identify new targets in antipsychotic drug development.
Resumo:
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors expressed primarily on neurons and glial cells modulating the effects of glutamatergic neurotransmission. The pharmacological manipulation of these receptors has been postulated to be valuable in the management of some neurological disorders. Accordingly, the targeting of mGlu5 receptors as a therapeutic approach for Parkinson's disease (PD) has been proposed, especially to manage the adverse symptoms associated to chronic treatment with classical PD drugs. Thus, the specific pharmacological blocking of mGlu5 receptors constitutes one of the most attractive non-dopaminergic-based strategies for PD management in general and for the L-DOPA-induced diskynesia (LID) in particular. Overall, we provide here an update of the current state of the art of these mGlu5 receptor-based approaches that are under clinical study as agents devoted to alleviate PD symptoms.