45 resultados para Reactive permeable barriers
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Barriers to technological changes have recently been shown to be a key element in explaining differences in output per worker across countries. This study examines the role that labour market features and institutions have in explaining barriers to technology adoption. I build a model that includes labour market frictions, capital market imperfections and heterogeneity in workers' skills. I found that the unemployment rate together with the welfare losses that workers experiment after displacement are key factors in explaining the existence of barriers to technology adoption. Moreover, I found that none of these factors alone is sufficient to build these barriers. The theory also suggests that welfare policies like the unemployment insurance system may enhance these kinds of barriers while policies like a severance payment system financed by an income tax seem to be more effective in eliminating them.
Resumo:
The present paper analyses the link between firms’ decisions to innovate and the barriers that prevent them from being innovative. The aim is twofold. First, it analyses three groups of barriers to innovation: the cost of innovation projects, lack of knowledge and market conditions. Second, it presents the main steps taken by Catalan Government to promote the creation of new firms and to reduce barriers to innovation. The data set used is based on the 2004 official innovation survey of Catalonia which was taken from the Spanish CIS-4 sample. This sample includes individual information on 2,954 Catalan firms in manufacturing industries and knowledge-intensive services (KIS). The empirical analysis reveals pronounced differences regarding a firm’s propensity to innovate and its perception of barriers. Moreover, the results show that cost and knowledge barriers seem to be the most important and that there are substantial sectoral differences in the way that firms react to barriers. The results of this paper have important implications for the design of future public policy to promote entrepreneurship and innovation together.
Resumo:
This work investigates applying introspective reasoning to improve the performance of Case-Based Reasoning (CBR) systems, in both reactive and proactive fashion, by guiding learning to improve how a CBR system applies its cases and by identifying possible future system deficiencies. First we present our reactive approach, a new introspective reasoning model which enables CBR systems to autonomously learn to improve multiple facets of their reasoning processes in response to poor quality solutions. We illustrate our model’s benefits with experimental results from tests in an industrial design application. Then as for our proactive approach, we introduce a novel method for identifying regions in a case-base where the system gives low confidence solutions to possible future problems. Experimentation is provided for Zoology and Robo-Soccer domains and we argue how encountered regions of dubiosity help us to analyze the case-bases of a given CBR system.
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
The relevance of the fragment relaxation energy term and the effect of the basis set superposition error on the geometry of the BF3⋯NH3 and C2H4⋯SO2 van der Waals dimers have been analyzed. Second-order Møller-Plesset perturbation theory calculations with the d95(d,p) basis set have been used to calculate the counterpoise-corrected barrier height for the internal rotations. These barriers have been obtained by relocating the stationary points on the counterpoise-corrected potential energy surface of the processes involved. The fragment relaxation energy can have a large influence on both the intermolecular parameters and barrier height. The counterpoise correction has proved to be important for these systems
Resumo:
We report here a new empirical density functional that is constructed based on the performance of OPBE and PBE for spin states and SN 2 reaction barriers and how these are affected by different regions of the reduced gradient expansion. In a previous study [Swart, Sol̀, and Bickelhaupt, J. Comput. Methods Sci. Eng. 9, 69 (2009)] we already reported how, by switching between OPBE and PBE, one could obtain both the good performance of OPBE for spin states and reaction barriers and that of PBE for weak interactions within one and the same (SSB-sw) functional. Here we fine tuned this functional and include a portion of the KT functional and Grimme's dispersion correction to account for π- π stacking. Our new SSB-D functional is found to be a clear improvement and functions very well for biological applications (hydrogen bonding, π -π stacking, spin-state splittings, accuracy of geometries, reaction barriers)
Resumo:
We use a dynamic monopolistic competition model to show that an economythat inherits a small range of specialized inputs can be trapped into alower stage of development. The limited availability of specialized inputsforces the final goods producers to use a labor intensive technology, whichin turn implies a small inducement to introduce new intermediate inputs. Thestart--up costs, which make the intermediate inputs producers subject todynamic increasing returns, and pecuniary externalities that result from thefactor substitution in the final goods sector, play essential roles in themodel.
Resumo:
Aquest treball gira entorn la qüestió de l’ús que es fa de la literatura com a medi per a l’ensenyament de l’anglès com a segona llengua. En primer lloc, dibuixa el marc de la situació actual on hi ha una clara separació entre llengua i literatura com a assignatures diferenciades i fa un repàs de les diferents metodologies que al llarg de la historia han utilitzat la literatura com a eina d’aprenentatge de la llengua. Segonament, el treball explica el desenvolupament i posada en pràctica d’una unitat didàctica completa per a alumnes de segon de batxillerat, que te la literatura con a punt de sortida. El treball mira de concloure com la utilització de la literatura exerceix un poder de motivació clau en els alumnes i aporta un context que dona sentit i riquesa a l’ensenyament de la llengua. Per últim, el treball fa un recull de les opinions de professors d’anglès de Catalunya al respecte d’aquest tema, a través d’un qüestionari que 66 professors associats a l’APAC (Associació de Professors d’Anglès de Catalunya) van respondre de manera desinteressada.
Resumo:
Background: Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells. Results: The study of 13C distribution of Jukat cells exposed to low edelfosine concentration, which induces apoptosis in ¿5% of cells, revealed metabolic changes previous to the development of apoptotic program. Specifically, it was found that low dose of edelfosine stimulates the TCA cycle. These metabolic perturbations were coupled with an increase of nucleic acid synthesis de novo, which indicates acceleration of biosynthetic and reparative processes. The further increase of the TCA cycle fluxes, when higher doses of drug applied, eventually enhance reactive oxygen species (ROS) production and trigger apoptotic program. Conclusion: The application of Isodyn to the analysis of mechanism of edelfosine-induced apoptosis revealed primary drug-induced metabolic changes, which are important for the subsequent initiation of apoptotic program. Initiation of such metabolic changes could be exploited in anticancer therapy.
Resumo:
Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies.
Resumo:
La2/3Ca1/3MnO3 (LCMO) films have been deposited on (110)-oriented SrTiO3 (STO) substrates. X-ray diffraction and high-resolution electron microscopy reveal that the (110) LCMO films are epitaxial and anisotropically in-plane strained, with higher relaxation along the [1¿10] direction than along the [001] direction; x-ray absorption spectroscopy data signaled the existence of a single intermediate Mn3+/4+ 3d-state at the film surface. Their magnetic properties are compared to those of (001) LCMO films grown simultaneously on (001) STO substrates It is found that (110) LCMO films present a higher Curie temperature (TC) and a weaker decay of magnetization when approaching TC than their (001) LCMO counterparts. These improved films have been subsequently covered by nanometric STO layers. Conducting atomic-force experiments have shown that STO layers, as thin as 0.8 nm, grown on top of the (110) LCMO electrode, display good insulating properties. We will show that the electric conductance across (110) STO layers, exponentially depending on the barrier thickness, is tunnel-like. The barrier height in STO (110) is found to be similar to that of STO (001). These results show that the (110) LCMO electrodes can be better electrodes than (001) LCMO for magnetic tunnel junctions, and that (110) STO are suitable insulating barriers.
Resumo:
An accurate mass formula at finite temperature has been used to obtain a more precise estimation of temperature effects on fission barriers calculated within the liquid drop model.
Resumo:
We study the problem of the advection of passive particles with inertia in a two-dimensional, synthetic, and stationary turbulent flow. The asymptotic analytical result and numerical simulations show the importance of inertial bias in collecting the particles preferentially in certain regions of the flow, depending on their density relative to that of the flow. We also study how these aggregates are affected when a simple chemical reaction mechanism is introduced through a Eulerian scheme. We find that inertia can be responsible for maintaining a stationary concentration pattern even under nonfavorable reactive conditions or destroying it under favorable ones.
Resumo:
Using Monte Carlo simulations we study the dynamics of three-dimensional Ising models with nearest-, next-nearest-, and four-spin (plaquette) interactions. During coarsening, such models develop growing energy barriers, which leads to very slow dynamics at low temperature. As already reported, the model with only the plaquette interaction exhibits some of the features characteristic of ordinary glasses: strong metastability of the supercooled liquid, a weak increase of the characteristic length under cooling, stretched-exponential relaxation, and aging. The addition of two-spin interactions, in general, destroys such behavior: the liquid phase loses metastability and the slow-dynamics regime terminates well below the melting transition, which is presumably related with a certain corner-rounding transition. However, for a particular choice of interaction constants, when the ground state is strongly degenerate, our simulations suggest that the slow-dynamics regime extends up to the melting transition. The analysis of these models leads us to the conjecture that in the four-spin Ising model domain walls lose their tension at the glassy transition and that they are basically tensionless in the glassy phase.