4 resultados para Re-evaluation counseling
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We address the question of whether growth and welfare can be higher in crisis prone economies. First, we show that there is a robust empirical link between per-capita GDP growth and negative skewness of credit growth across countries with active financial markets. That is, countries that have experienced occasional crises have grown on average faster than countries with smooth credit conditions. We then present a two-sector endogenous growth model in which financial crises can occur, and analyze the relationship between financial fragility and growth. The underlying credit market imperfections generateborrowing constraints, bottlenecks and low growth. We show that under certain conditions endogenous real exchange rate risk arises and firms find it optimal to take on credit risk in the form of currency mismatch. Along such a risky path average growth is higher, but self-fulfilling crises occur occasionally. Furthermore, we establish conditions under which the adoption of credit risk is welfare improving and brings the allocation nearer to the Pareto optimal level. The design of the model is motivated by several features of recent crises: credit risk in the form of foreign currency denominated debt; costly crises that generate firesales and widespread bankruptcies; and asymmetric sectorial responses, wherethe nontradables sector falls more than the tradables sector in the wake of crises.
Resumo:
BACKGROUND: Modern sequencing technologies have massively increased the amount of data available for comparative genomics. Whole-transcriptome shotgun sequencing (RNA-seq) provides a powerful basis for comparative studies. In particular, this approach holds great promise for emerging model species in fields such as evolutionary developmental biology (evo-devo). RESULTS: We have sequenced early embryonic transcriptomes of two non-drosophilid dipteran species: the moth midge Clogmia albipunctata, and the scuttle fly Megaselia abdita. Our analysis includes a third, published, transcriptome for the hoverfly Episyrphus balteatus. These emerging models for comparative developmental studies close an important phylogenetic gap between Drosophila melanogaster and other insect model systems. In this paper, we provide a comparative analysis of early embryonic transcriptomes across species, and use our data for a phylogenomic re-evaluation of dipteran phylogenetic relationships. CONCLUSIONS: We show how comparative transcriptomics can be used to create useful resources for evo-devo, and to investigate phylogenetic relationships. Our results demonstrate that de novo assembly of short (Illumina) reads yields high-quality, high-coverage transcriptomic data sets. We use these data to investigate deep dipteran phylogenetic relationships. Our results, based on a concatenation of 160 orthologous genes, provide support for the traditional view of Clogmia being the sister group of Brachycera (Megaselia, Episyrphus, Drosophila), rather than that of Culicomorpha (which includes mosquitoes and blackflies).
Resumo:
Purpose: To assess the feasibility of a method based on microwave spectrometry to detect structural distortions of metallic stents in open air conditions and envisage the prospects of this approach toward possible medical applicability for the evaluation of implanted stents. Methods: Microwave absorbance spectra between 2.0 and 18.0 GHz were acquired in open air for the characterization of a set of commercial stents using a specifically design setup. Rotating each sample over 360º, 2D absorbance diagrams were generated as a function of frequency and rotation angle. To check our approach for detecting changes in stent length (fracture) and diameter (recoil), two specific tests were performed in open air. Finally, with a few adjustments, this same system provides 2D absorbance diagrams of stents immersed in a water-based phantom, this time over a bandwidth ranging from 0.2 to 1.8 GHz. Results: The authors show that metallic stents exhibit characteristic resonant frequencies in their microwave absorbance spectra in open air which depend on their length and, as a result, may reflect the occurrence of structural distortions. These resonances can be understood considering that such devices behave like dipole antennas in terms of microwave scattering. From fracture tests, the authors infer that microwave spectrometry provides signs of presence of Type I to Type IV stent fractures and allows in particular a quantitative evaluation of Type III and Type IV fractures. Recoil tests show that microwave spectrometry seems able to provide some quantitative assessment of diametrical shrinkage, but only if it involves longitudinal shortening. Finally, the authors observe that the resonant frequencies of stents placed inside the phantom shift down with respect to the corresponding open air frequencies, as it should be expected considering the increase of dielectric permittivity from air to water. Conclusions: The evaluation of stent resonant frequencies provided by microwave spectrometry allows detection and some quantitative assessment of stent fracture and recoil in open air conditions. Resonances of stents immersed in water can be also detected and their characteristic frequencies are in good agreement with theoretical estimates. Although these are promising results, further verifica tion in a more relevant phantom is required in order to foresee the real potential of this approach.
Resumo:
Purpose: To assess the feasibility of a method based on microwave spectrometry to detect structural distortions of metallic stents in open air conditions and envisage the prospects of this approach toward possible medical applicability for the evaluation of implanted stents. Methods: Microwave absorbance spectra between 2.0 and 18.0 GHz were acquired in open air for the characterization of a set of commercial stents using a specifically design setup. Rotating each sample over 360º, 2D absorbance diagrams were generated as a function of frequency and rotation angle. To check our approach for detecting changes in stent length (fracture) and diameter (recoil), two specific tests were performed in open air. Finally, with a few adjustments, this same system provides 2D absorbance diagrams of stents immersed in a water-based phantom, this time over a bandwidth ranging from 0.2 to 1.8 GHz. Results: The authors show that metallic stents exhibit characteristic resonant frequencies in their microwave absorbance spectra in open air which depend on their length and, as a result, may reflect the occurrence of structural distortions. These resonances can be understood considering that such devices behave like dipole antennas in terms of microwave scattering. From fracture tests, the authors infer that microwave spectrometry provides signs of presence of Type I to Type IV stent fractures and allows in particular a quantitative evaluation of Type III and Type IV fractures. Recoil tests show that microwave spectrometry seems able to provide some quantitative assessment of diametrical shrinkage, but only if it involves longitudinal shortening. Finally, the authors observe that the resonant frequencies of stents placed inside the phantom shift down with respect to the corresponding open air frequencies, as it should be expected considering the increase of dielectric permittivity from air to water. Conclusions: The evaluation of stent resonant frequencies provided by microwave spectrometry allows detection and some quantitative assessment of stent fracture and recoil in open air conditions. Resonances of stents immersed in water can be also detected and their characteristic frequencies are in good agreement with theoretical estimates. Although these are promising results, further verifica tion in a more relevant phantom is required in order to foresee the real potential of this approach.