22 resultados para Random Number Generation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Aquest treball de final de carrera inclou el desenvolupament d'un programari que permet xifrar arxius utilitzant un algorisme de flux. El desenvolupament del programari ha estat dividit en tres parts, el generador de números aleatoris, l'aplicació de l'algorisme de xifrat on s'han aplicat les tècniques adients de criptografia i la interfície gràfica per l'usuari.
Resumo:
En aquest TFC es proposa un protocol de CMS aplicat a un Joc de Bingo, en que les entrades són nombres generats pels jugadors i el resultat cercat és un nombre aleatori per al joc.
Resumo:
From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.
Resumo:
This paper presents a new framework for studying irreversible (dis)investment whena market follows a random number of random-length cycles (such as a high-tech productmarket). It is assumed that a firm facing such market evolution is always unsure aboutwhether the current cycle is the last one, although it can update its beliefs about theprobability of facing a permanent decline by observing that no further growth phasearrives. We show that the existence of regime shifts in fluctuating markets suffices for anoption value of waiting to (dis)invest to arise, and we provide a marginal interpretationof the optimal (dis)investment policies, absent in the real options literature. Thepaper also shows that, despite the stochastic process of the underlying variable has acontinuous sample path, the discreteness in the regime changes implies that the samplepath of the firm s value experiences jumps whenever the regime switches all of a sudden,irrespective of whether the firm is active or not.
Resumo:
Background: Although randomized clinical trials (RCTs) are considered the gold standard of evidence, their reporting is often suboptimal. Trial registries have the potential to contribute important methodologic information for critical appraisal of study results. Methods and Findings: The objective of the study was to evaluate the reporting of key methodologic study characteristics in trial registries. We identified a random sample (n = 265) of actively recruiting RCTs using the World Health Organization International Clinical Trials Registry Platform (ICTRP) search portal in 2008. We assessed the reporting of relevant domains from the Cochrane Collaboration’s ‘Risk of bias’ tool and other key methodological aspects. Our primary outcomes were the proportion of registry records with adequate reporting of random sequence generation, allocation concealment, blinding, and trial outcomes. Two reviewers independently assessed each record. Weighted overall proportions in the ICTRP search portal for adequate reporting of sequence generation, allocation concealment, blinding (including and excluding open label RCT) and primary outcomes were 5.7% (95% CI 3.0–8.4%), 1.4% (0–2.8%), 41% (35–47%), 8.4% (4.1–13%), and 66% (60–72%), respectively. The proportion of adequately reported RCTs was higher for registries that used specific methodological fields for describing methods of randomization and allocation concealment compared to registries that did not. Concerning other key methodological aspects, weighted overall proportions of RCTs with adequately reported items were as follows: eligibility criteria (81%), secondary outcomes (46%), harm (5%) follow-up duration (62%), description of the interventions (53%) and sample size calculation (1%). Conclusions: Trial registries currently contain limited methodologic information about registered RCTs. In order to permit adequate critical appraisal of trial results reported in journals and registries, trial registries should consider requesting details on key RCT methods to complement journal publications. Full protocols remain the most comprehensive source of methodologic information and should be made publicly available.
Resumo:
Uncorrelated random scale-free networks are useful null models to check the accuracy and the analytical solutions of dynamical processes defined on complex networks. We propose and analyze a model capable of generating random uncorrelated scale-free networks with no multiple and self-connections. The model is based on the classical configuration model, with an additional restriction on the maximum possible degree of the vertices. We check numerically that the proposed model indeed generates scale-free networks with no two- and three-vertex correlations, as measured by the average degree of the nearest neighbors and the clustering coefficient of the vertices of degree k, respectively.
Resumo:
Report for the scientific sojourn at the Stanford University from January until June 2007. Music is well known for affecting human emotional states, yet the relationship between specific musical parameters and emotional responses is still not clear. With the advent of new human-computer interaction (HCI) technologies, it is now possible to derive emotion-related information from physiological data and use it as an input to interactive music systems. Providing such implicit musical HCI will be highly relevant for a number of applications including music therapy, diagnosis, nteractive gaming, and physiologically-based musical instruments. A key question in such physiology-based compositions is how sound synthesis parameters can be mapped to emotional states of valence and arousal. We used both verbal and heart rate responses to evaluate the affective power of five musical parameters. Our results show that a significant correlation exists between heart rate and the subjective evaluation of well-defined musical parameters. Brightness and loudness showed to be arousing parameters on subjective scale while harmonicity and even partial attenuation factor resulted in heart rate changes typically associated to valence. This demonstrates that a rational approach to designing emotion-driven music systems for our public installations and music therapy applications is possible.
Resumo:
I study large random assignment economies with a continuum of agents and a finite number of object types. I consider the existence of weak priorities discriminating among agents with respect to their rights concerning the final assignment. The respect for priorities ex ante (ex-ante stability) usually precludes ex-ante envy-freeness. Therefore I define a new concept of fairness, called no unjustified lower chances: priorities with respect to one object type cannot justify different achievable chances regarding another object type. This concept, which applies to the assignment mechanism rather than to the assignment itself, implies ex-ante envy-freeness among agents of the same priority type. I propose a variation of Hylland and Zeckhauser' (1979) pseudomarket that meets ex-ante stability, no unjustified lower chances and ex-ante efficiency among agents of the same priority type. Assuming enough richness in preferences and priorities, the converse is also true: any random assignment with these properties could be achieved through an equilibrium in a pseudomarket with priorities. If priorities are acyclical (the ordering of agents is the same for each object type), this pseudomarket achieves ex-ante efficient random assignments.
Resumo:
One of the key aspects in 3D-image registration is the computation of the joint intensity histogram. We propose a new approach to compute this histogram using uniformly distributed random lines to sample stochastically the overlapping volume between two 3D-images. The intensity values are captured from the lines at evenly spaced positions, taking an initial random offset different for each line. This method provides us with an accurate, robust and fast mutual information-based registration. The interpolation effects are drastically reduced, due to the stochastic nature of the line generation, and the alignment process is also accelerated. The results obtained show a better performance of the introduced method than the classic computation of the joint histogram
Resumo:
In multiuser detection, the set of users active at any time may be unknown to the receiver. In these conditions, optimum reception consists of detecting simultaneously the set of activeusers and their data, problem that can be solved exactly by applying random-set theory (RST) and Bayesian recursions (BR). However, implementation of optimum receivers may be limited by their complexity, which grows exponentially with the number of potential users. In this paper we examine three strategies leading to reduced-complexity receivers.In particular, we show how a simple approximation of BRs enables the use of Sphere Detection (SD) algorithm, whichexhibits satisfactory performance with limited complexity.
Resumo:
This paper presents several algorithms for joint estimation of the target number and state in a time-varying scenario. Building on the results presented in [1], which considers estimation of the target number only, we assume that not only the target number, but also their state evolution must be estimated. In this context, we extend to this new scenario the Rao-Blackwellization procedure of [1] to compute Bayes recursions, thus defining reduced-complexity solutions for the multi-target set estimator. A performance assessmentis finally given both in terms of Circular Position Error Probability - aimed at evaluating the accuracy of the estimated track - and in terms of Cardinality Error Probability, aimed at evaluating the reliability of the target number estimates.
Resumo:
We study the behavior of the random-bond Ising model at zero temperature by numerical simulations for a variable amount of disorder. The model is an example of systems exhibiting a fluctuationless first-order phase transition similar to some field-induced phase transitions in ferromagnetic systems and the martensitic phase transition appearing in a number of metallic alloys. We focus on the study of the hysteresis cycles appearing when the external field is swept from positive to negative values. By using a finite-size scaling hypothesis, we analyze the disorder-induced phase transition between the phase exhibiting a discontinuity in the hysteresis cycle and the phase with the continuous hysteresis cycle. Critical exponents characterizing the transition are obtained. We also analyze the size and duration distributions of the magnetization jumps (avalanches).
Resumo:
A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.
Resumo:
We study the nonequilibrium behavior of the three-dimensional Gaussian random-field Ising model at T=0 in the presence of a uniform external field using a two-spin-flip dynamics. The deterministic, history-dependent evolution of the system is compared with the one obtained with the standard one-spin-flip dynamics used in previous studies of the model. The change in the dynamics yields a significant suppression of coercivity, but the distribution of avalanches (in number and size) stays remarkably similar, except for the largest ones that are responsible for the jump in the saturation magnetization curve at low disorder in the thermodynamic limit. By performing a finite-size scaling study, we find strong evidence that the change in the dynamics does not modify the universality class of the disorder-induced phase transition.