51 resultados para Radiation Signaling
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Thermal systems interchanging heat and mass by conduction, convection, radiation (solar and thermal ) occur in many engineering applications like energy storage by solar collectors, window glazing in buildings, refrigeration of plastic moulds, air handling units etc. Often these thermal systems are composed of various elements for example a building with wall, windows, rooms, etc. It would be of particular interest to have a modular thermal system which is formed by connecting different modules for the elements, flexibility to use and change models for individual elements, add or remove elements without changing the entire code. A numerical approach to handle the heat transfer and fluid flow in such systems helps in saving the full scale experiment time, cost and also aids optimisation of parameters of the system. In subsequent sections are presented a short summary of the work done until now on the orientation of the thesis in the field of numerical methods for heat transfer and fluid flow applications, the work in process and the future work.
Resumo:
The 1st chapter of this work presents the different experiments and collaborations in which I am involved during my PhD studies of Physics. Following those descriptions, the 2nd chapter is dedicated to how the radiation affects the silicon sensors, as well as some experimental measurements carried out at CERN (Geneve, Schwitzerland) and IFIC (Valencia, Spain) laboratories. Besides the previous investigation results, this chapter includes the most recent scientific papers appeared in the latest RD50 (Research & Development #50) Status Report, published in January 2007, as well as some others published this year. The 3rd and 4th are dedicated to the simulation of the electrical behavior of solid state detectors. In chapter 3 are reported the results obtained for the illumination of edgeless detectors irradiated at different fluences, in the framework of the TOSTER Collaboration. The 4th chapter reports about simulation design, simulation and fabrication of a novel 3D detector developed at CNM for ions detection in the future ITER fusion reactor. This chapter will be extended with irradiation simulations and experimental measurements in my PhD Thesis.
Resumo:
General signaling results in dynamic Tullock contests have been missing for long. The reason is the tractability of the problems. In this paper, an uninformed contestant with valuation vx competes against an informed opponent with valuation, either high vh or low vl. We show that; (i) When the hierarchy of valuations is vh ≥ vx ≥ vl, there is no pooling. Sandbagging is too costly for the high type. (ii) When the order of valuations is vx ≥ vh ≥ vl, there is no separation if vh and vl are close. Sandbagging is cheap due to the proximity of valuations. However, if vh and vx are close, there is no pooling. First period cost of pooling is high. (iii) For valuations satisfying vh ≥ vl ≥ vx, there is no separation if vh and vl are close. Bluffing in the first period is cheap for the low valuation type. Conversely, if vx and vl are close there is no pooling. Bluffing in the first stage is too costly. JEL: C72, C73, D44, D82. KEYWORDS: Signaling, Dynamic Contests, Non-existence, Sandbag Pooling, Bluff Pooling, Separating
Resumo:
The radiation distribution function used by Domínguez and Jou [Phys. Rev. E 51, 158 (1995)] has been recently modified by Domínguez-Cascante and Faraudo [Phys. Rev. E 54, 6933 (1996)]. However, in these studies neither distribution was written in terms of directly measurable quantities. Here a solution to this problem is presented, and we also propose an experiment that may make it possible to determine the distribution function of nonequilibrium radiation experimentally. The results derived do not depend on a specific distribution function for the matter content of the system
Resumo:
The production of dicalcium phosphate are included in the list of industries classified as NORM in Euratom 29/96. The aim of this study is to determine the con-centrations of specific flows and their variability over time of 226Ra, 210Pb and 210Po in the inputs and out-puts of the production process. Also classified areas of the plant and the workers according to the radio-logical risk and radiation protection measures have been proposed. The results show that the rock phos-phate has a high specific activity of the 226Rn, 210Po and 210Pb in secular equilibrium (1500-2000 Bq • kg-1) but the outputs of the process will distort the secu-lar equilibrium. The only shortfall is the flow balance of 226Ra, which accumulates in the process. The dis-tribution of the dose in the plant concentrates on the area of reactor tanks and slop pipes as regards exter-nal irradiation dose and the grinding zone, the area of packaging and loading area so respects dose inhaled. We propose a signaling areas, cleaning and replace-ment of old equipment in the facilities and radiological safety of the maintenance staff.
Resumo:
Proyecto de investigación elaborado a partir de una estancia en el Institute for Atmospheric and Climate Science, a Alemanya, entre 2010 y 2012. La radiación solar que alcanza la superficie terrestre es un factor clave entre los procesos que controlan el clima de la Tierra, dado el papel que desempeñan en el balance energético y el ciclo hidrológico. Establecer su contribución al cambio climático reciente supone una gran dificultad debido a la complejidad de los procesos implicados, la gran cantidad de información requerida, y la incertidumbre de las bases de datos disponibles en la actualidad. Así, el objetivo principal del proyecto ha consistido en generar una base de datos de insolación incluyendo las series más largas (desde finales del siglo XIX) disponibles en toda Europa. Esta base de datos complementa para nuestro continente el Global Energy Balance Archive (GEBA) que mantiene y gestiona el grupo que ha acogido al receptor de la ayuda postdoctoral, y permite extender espacial (especialmente en países del sur de Europa) y temporalmente las series climáticas disponibles de mediciones de irradiancia solar. Como la insolación es un proxy de la irradiancia solar, el proyecto actual también ha tratado de calibrar de forma exhaustiva ambas variables, a fin de generar una nueva base de datos reconstruida de esta segunda variable que esté disponible desde finales del siglo XIX en Europa. Un segundo objetivo del proyecto ha consistido en continuar trabajando a escala de mayor detalle sobre la Península Ibérica, con el fin de proporcionar una mejor comprensión del fenómeno del “global dimming/brightening” y su impacto en el ciclo hidrológico y balance energético. Finalmente, un tercer objetivo del presente proyecto postdoctoral ha consistido en continuar estudiando los posibles ciclos semanales a gran escala de diferentes variables climáticas, línea de investigación de interés para la detección de posibles efectos de los aerosoles antrópicos en el clima a escalas temporales breves, y consecuentemente estrechamente vinculado al fenómeno del “global dimming/brightening”.
Resumo:
Eating disorders (EDs) are complex psychiatric diseases that include anorexia nervosa and bulimia nervosa, and have higher than 50% heritability. Previous studies have found association of BDNF and NTRK2 to ED, while animal models suggest that other neurotrophin genes might also be involved in eating behavior. We have performed a family-based association study with 151 TagSNPs covering 10 neurotrophin signaling genes: NGFB, BDNF, NTRK1, NGFR/p75, NTF4/5, NTRK2, NTF3, NTRK3, CNTF and CNTFR in 371 ED trios of Spanish, French and German origin. Besides several nominal associations, we found a strong significant association after correcting for multiple testing (P = 1.04 × 10−4) between ED and rs7180942, located in the NTRK3 gene, which followed an overdominant model of inheritance. Interestingly, HapMap unrelated individuals carrying the rs7180942 risk genotypes for ED showed higher levels of expression of NTRK3 in lymphoblastoid cell lines. Furthermore, higher expression of the orthologous murine Ntrk3 gene was also detected in the hypothalamus of the anx/anx mouse model of anorexia. Finally, variants in NGFB gene appear to modify the risk conferred by the NTRK3 rs7180942 risk genotypes (P = 4.0 × 10−5) showing a synergistic epistatic interaction. The reported data, in addition to the previous reported findings for BDNF and NTRK2, point neurotrophin signaling genes as key regulators of eating behavior and their altered cross-regulation as susceptibility factors for EDs.
Resumo:
The inner ear is responsible for the perception of motion and sound in vertebrates. Its functional unit, the sensory patch, contains mechanosensory hair cells innervated by sensory neurons from the statoacoustic ganglion (SAG) that project to the corresponding nuclei in the brainstem. How hair cells develop at specific positions, and how otic neurons are sorted to specifically innervate each endorgan and to convey the extracted information to the hindbrain is not completely understood. In this work, we study the generation of macular sensory patches and investigate the role of Hedgehog (Hh) signaling in the production of their neurosensory elements. Using zebrafish transgenic lines to visualize the dynamics of hair cell and neuron production, we show that the development of the anterior and posterior maculae is asynchronic, suggesting they are independently regulated. Tracing experiments demonstrate the SAG is topologically organized in two different neuronal subpopulations, which are spatially segregated and innervate specifically each macula. Functional experiments identify the Hh pathway as crucial in coordinating the production of hair cells in the posterior macula, and the formation of its specific innervation. Finally, gene expression analyses suggest that Hh influences the balance between different SAG neuronal subpopulations. These results lead to a model in which Hh orients functionally the development of inner ear towards an auditory fate in all vertebrate species.
Resumo:
Background: During early steps of embryonic development the hindbrain undergoes a regionalization process along the anterior-posterior (AP) axis that leads to a metameric organization in a series of rhombomeres (r). Refinement of the AP identities within the hindbrain requires the establishment of local signaling centers, which emit signals that pattern territories in their vicinity. Previous results demonstrated that the transcription factor vHnf1 confers caudal identity to the hindbrain inducing Krox20 in r5 and MafB/Kreisler in r5 and r6, through FGF signaling [1].Results: We show that in the chick hindbrain, Fgf3 is transcriptionally activated as early as 30 min after mvHnf1 electroporation, suggesting that it is a direct target of this transcription factor. We also analyzed the expression profiles of FGF activity readouts, such as MKP3 and Pea3, and showed that both are expressed within the hindbrain at early stages of embryonic development. In addition, MKP3 is induced upon overexpression of mFgf3 or mvHnf1 in the hindbrain, confirming vHnf1 is upstream FGF signaling. Finally, we addressed the question of which of the FGF-responding intracellular pathways were active and involved in the regulation of Krox20 and MafB in the hindbrain. While Ras-ERK1/2 activity is necessary for MKP3, Krox20 and MafB induction, PI3K-Akt is not involved in that process.Conclusion: Based on these observations we propose that vHnf1 acts directly through FGF3, and promotes caudal hindbrain identity by activating MafB and Krox20 via the Ras-ERK1/2 intracellular pathway.
Resumo:
The interest in solar ultraviolet (UV) radiation from the scientific community and the general population has risen significantly in recent years because of the link between increased UV levels at the Earth's surface and depletion of ozone in the stratosphere. As a consequence of recent research, UV radiation climatologies have been developed, and effects of some atmospheric constituents (such as ozone or aerosols) have been studied broadly. Correspondingly, there are well-established relationships between, for example, total ozone column and UV radiation levels at the Earth's surface. Effects of clouds, however, are not so well described, given the intrinsic difficulties in properly describing cloud characteristics. Nevertheless, the effect of clouds cannot be neglected, and the variability that clouds induce on UV radiation is particularly significant when short timescales are involved. In this review we show, summarize, and compare several works that deal with the effect of clouds on UV radiation. Specifically, works reviewed here approach the issue from the empirical point of view: Some relationship between measured UV radiation in cloudy conditions and cloud-related information is given in each work. Basically, there are two groups of methods: techniques that are based on observations of cloudiness (either from human observers or by using devices such as sky cameras) and techniques that use measurements of broadband solar radiation as a surrogate for cloud observations. Some techniques combine both types of information. Comparison of results from different works is addressed through using the cloud modification factor (CMF) defined as the ratio between measured UV radiation in a cloudy sky and calculated radiation for a cloudless sky. Typical CMF values for overcast skies range from 0.3 to 0.7, depending both on cloud type and characteristics. Despite this large dispersion of values corresponding to the same cloud cover, it is clear that the cloud effect on UV radiation is 15–45% lower than the cloud effect on total solar radiation. The cloud effect is usually a reducing effect, but a significant number of works report an enhancement effect (that is increased UV radiation levels at the surface) due to the presence of clouds. The review concludes with some recommendations for future studies aimed to further analyze the cloud effects on UV radiation
Resumo:
Microquasars are potential candidates to produce a non-negligible fraction of the observed galactic cosmic rays. The protons accelerated at the jet termination shock interact with the interstellar medium and may produce detectable fluxes of extended emission at different energy bands: high-energy and very high-energy gamma-rays produced by neutral pion-decay, synchrotron and bremsstrahlung emission in a wide energy range generated by the secondary electrons produced by charged pion-decay. We discuss the association between this scenario and some of the unidentified EGRET sources in the galactic plane.
Resumo:
The epidermal growth factor receptor (EGFR) is a member of the tyrosine kinase receptor family involved in signal transduction and the regulation of cellular proliferation and differentiation. It is also a calmodulin-binding protein. To examine the role of calmodulin in the regulation of EGFR, the effect of calmodulin antagonist, W-13, on the intracellular trafficking of EGFR and the MAPK signaling pathway was analyzed. W-13 did not alter the internalization of EGFR but inhibited its recycling and degradation, thus causing the accumulation of EGF and EGFR in enlarged early endosomal structures. In addition, we demonstrated that W-13 stimulated the tyrosine phosphorylation of EGFR and consequent recruitment of Shc adaptor protein with EGFR, presumably through inhibition of the calmodulin-dependent protein kinase II (CaM kinase II). W-13¿mediated EGFR phosphorylation was blocked by metalloprotease inhibitor, BB94, indicating a possible involvement of shedding in this process. However, MAPK activity was decreased by W-13; dissection of this signaling pathway showed that W-13 specifically interferes with Raf-1 activity. These data are consistent with the regulation of EGFR by calmodulin at several steps of the receptor signaling and trafficking pathways.
Resumo:
Ras proteins are small guanosine triphosphatases involved in the regulation of important cellular functions such as proliferation, differentiation, and apoptosis. Understanding the intracellular trafficking of Ras proteins is crucial to identify novel Ras signaling platforms. In this study, we report that epidermal growth factor triggers Kirsten Ras (KRas) translocation onto endosomal membranes (independently of calmodulin and protein kinase C phosphorylation) through a clathrin-dependent pathway. From early endosomes, KRas but not Harvey Ras or neuroblastoma Ras is sorted and transported to late endosomes (LEs) and lysosomes. Using yellow fluorescent protein¿Raf1 and the Raichu-KRas probe, we identified for the first time in vivo¿active KRas on Rab7 LEs, eliciting a signal output through Raf1. On these LEs, we also identified the p14¿MP1 scaffolding complex and activated extracellular signal-regulated kinase 1/2. Abrogation of lysosomal function leads to a sustained late endosomal mitogen-activated protein kinase signal output. Altogether, this study reveals novel aspects about KRas intracellular trafficking and signaling, shedding new light on the mechanisms controlling Ras regulation in the cell.
Resumo:
During cell proliferation, growth must occur to maintain homeostatic cell size. Here we show that E2F1 is capable of inducing growth by regulating mTORC1 activity. The activation of cell growth and mTORC1 by E2F1 is dependent on both E2F1's ability to bind DNA and to regulate gene transcription, demonstrating that a gene induction expression program is required in this process. Unlike E2F1, E2F3 is unable to activate mTORC1, suggesting that growth activity could be restricted to individual E2F members. The effect of E2F1 on the activation of mTORC1 does not depend on Akt. Furthermore, over-expression of TSC2 does not interfere with the effect of E2F1, indicating that the E2F1-induced signal pathway can compensate for the inhibitory effect of TSC2 on Rheb. Immunolocalization studies demonstrate that E2F1 induces the translocation of mTORC1 to the late endosome vesicles, in a mechanism dependent of leucine. E2F1 and leucine, or insulin, together affect the activation of S6K stronger than alone suggesting that they are complementary in activating the signal pathway. From these studies, E2F1 emerges as a key protein that integrates cell division and growth, both of which are essential for cell proliferation.
Resumo:
The most important features of the proposed spherical gravitational wave detectors are closely linked with their symmetry. Hollow spheres share this property with solid ones, considered in the literature so far, and constitute an interesting alternative for the realization of an omnidirectional gravitational wave detector. In this paper we address the problem of how a hollow elastic sphere interacts with an incoming gravitational wave and find an analytical solution for its normal mode spectrum and response, as well as for its energy absorption cross sections. It appears that this shape can be designed having relatively low resonance frequencies (~ 200 Hz) yet keeping a large cross section, so its frequency range overlaps with the projected large interferometers. We also apply the obtained results to discuss the performance of a hollow sphere as a detector for a variety of gravitational wave signals.