47 resultados para Radar simulators

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present project has performed the study and development of a new technique for the detection of gases with range resolution. This technique called FMCW-lidar is a technique that evolves from the FMCW-radar technique to be applied to lidar systems. Moreover, it takes advantage of the appearance of spectral absorption lines because of the interaction between light and gases to tune the light wavelength of a laser emitter with one of this spectral lines and then detects the backscattered light and analyzes it in order to obtain gas concentration measurements. The first part of the project consisted in the analysis of the WMS technique which is a technique for the in-situ measurement of gases. A complete theoretical analysis has been performed and some experiments have been carried out in order to test the technique and to validate its application to an FMCW-modulated system for the detection of gases. The second part of the project consisted in the analysis of the lidar FMCW technique for solid target detection and its extension to continuous media. The classical form of this technique has been analyzed for a distributed medium and a filtering effect has been found which prevents the accurate acquisition of the medium response. A modification of the technique has been proposed and a validation via simulations and some experiments has been carried on. After performing these tests, a novel system is proposed to be developed and tested in order to perform the indicated gas detection with range resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long development time is needed from the design to the implementation of an AUV. During the first steps, simulation plays an important role, since it allows for the development of preliminary versions of the control system to be integrated. Once the robot is ready, the control systems are implemented, tuned and tested. The use of a real-time simulator can help closing the gap between off-line simulation and real testing using the already implemented robot. When properly interfaced with the robot hardware, a real-time graphical simulation with a "hardware in the loop" configuration, can allow for the testing of the implemented control system running in the actual robot hardware. Hence, the development time is drastically reduced. These paper overviews the field of graphical simulators used for AUV development proposing a classification. It also presents NEPTUNE, a multi-vehicle, real-time, graphical simulator based on OpenGL that allows hardware in the loop simulations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last decade the interest on space-borne Synthetic Aperture Radars (SAR) for remote sensing applications has grown as testified by the number of recent and forthcoming missions as TerraSAR-X, RADARSAT-2, COSMO-kyMed, TanDEM-X and the Spanish SEOSAR/PAZ. In this sense, this thesis proposes to study and analyze the performance of the state-of-the-Art space-borne SAR systems, with modes able to provide Moving Target Indication capabilities (MTI), i.e. moving object detection and estimation. The research will focus on the MTI processing techniques as well as the architecture and/ or configuration of the SAR instrument, setting the limitations of the current systems with MTI capabilities, and proposing efficient solutions for the future missions. Two European projects, to which the Universitat Politècnica de Catalunya provides support, are an excellent framework for the research activities suggested in this thesis. NEWA project proposes a potential European space-borne radar system with MTI capabilities in order to fulfill the upcoming European security policies. This thesis will critically review the state-of-the-Art MTI processing techniques as well as the readiness and maturity level of the developed capabilities. For each one of the techniques a performance analysis will be carried out based on the available technologies, deriving a roadmap and identifying the different technological gaps. In line with this study a simulator tool will be developed in order to validate and evaluate different MTI techniques in the basis of a flexible space-borne radar configuration. The calibration of a SAR system is mandatory for the accurate formation of the SAR images and turns to be critical in the advanced operation modes as MTI. In this sense, the SEOSAR/PAZ project proposes the study and estimation of the radiometric budget. This thesis will also focus on an exhaustive analysis of the radiometric budget considering the current calibration concepts and their possible limitations. In the framework of this project a key point will be the study of the Dual Receive Antenna (DRA) mode, which provides MTI capabilities to the mission. An additional aspect under study is the applicability of the Digital Beamforming on multichannel and/or multistatic radar platforms, which conform potential solutions for the NEWA project with the aim to fully exploit its capability jointly with MTI techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the period 1996-2000, forty-three heavy rainfall events have been detected in the Internal Basins of Catalonia (Northeastern of Spain). Most of these events caused floods and serious damage. This high number leads to the need for a methodology to classify them, on the basis of their surface rainfall distribution, their internal organization and their physical features. The aim of this paper is to show a methodology to analyze systematically the convective structures responsible of those heavy rainfall events on the basis of the information supplied by the meteorological radar. The proposed methodology is as follows. Firstly, the rainfall intensity and the surface rainfall pattern are analyzed on the basis of the raingauge data. Secondly, the convective structures at the lowest level are identified and characterized by using a 2-D algorithm, and the convective cells are identified by using a 3-D procedure that looks for the reflectivity cores in every radar volume. Thirdly, the convective cells (3-D) are associated with the 2-D structures (convective rainfall areas). This methodology has been applied to the 43 heavy rainfall events using the meteorological radar located near Barcelona and the SAIH automatic raingauge network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 10 June 2000 event was the largest flash flood event that occurred in the Northeast of Spain in the late 20th century, both as regards its meteorological features and its considerable social impact. This paper focuses on analysis of the structures that produced the heavy rainfalls, especially from the point of view of meteorological radar. Due to the fact that this case is a good example of a Mediterranean flash flood event, a final objective of this paper is to undertake a description of the evolution of the rainfall structure that would be sufficiently clear to be understood at an interdisciplinary forum. Then, it could be useful not only to improve conceptual meteorological models, but also for application in downscaling models. The main precipitation structure was a Mesoscale Convective System (MCS) that crossed the region and that developed as a consequence of the merging of two previous squall lines. The paper analyses the main meteorological features that led to the development and triggering of the heavy rainfalls, with special emphasis on the features of this MCS, its life cycle and its dynamic features. To this end, 2-D and 3-D algorithms were applied to the imagery recorded over the complete life cycle of the structures, which lasted approximately 18 h. Mesoscale and synoptic information were also considered. Results show that it was an NS-MCS, quasi-stationary during its stage of maturity as a consequence of the formation of a convective train, the different displacement directions of the 2-D structures and the 3-D structures, including the propagation of new cells, and the slow movement of the convergence line associated with the Mediterranean mesoscale low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground clutter caused by anomalous propagation (anaprop) can affect seriously radar rain rate estimates, particularly in fully automatic radar processing systems, and, if not filtered, can produce frequent false alarms. A statistical study of anomalous propagation detected from two operational C-band radars in the northern Italian region of Emilia Romagna is discussed, paying particular attention to its diurnal and seasonal variability. The analysis shows a high incidence of anaprop in summer, mainly in the morning and evening, due to the humid and hot summer climate of the Po Valley, particularly in the coastal zone. Thereafter, a comparison between different techniques and datasets to retrieve the vertical profile of the refractive index gradient in the boundary layer is also presented. In particular, their capability to detect anomalous propagation conditions is compared. Furthermore, beam path trajectories are simulated using a multilayer ray-tracing model and the influence of the propagation conditions on the beam trajectory and shape is examined. High resolution radiosounding data are identified as the best available dataset to reproduce accurately the local propagation conditions, while lower resolution standard TEMP data suffers from interpolation degradation and Numerical Weather Prediction model data (Lokal Model) are able to retrieve a tendency to superrefraction but not to detect ducting conditions. Observing the ray tracing of the centre, lower and upper limits of the radar antenna 3-dB half-power main beam lobe it is concluded that ducting layers produce a change in the measured volume and in the power distribution that can lead to an additional error in the reflectivity estimate and, subsequently, in the estimated rainfall rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contamination of weather radar echoes by anomalous propagation (anaprop) mechanisms remains a serious issue in quality control of radar precipitation estimates. Although significant progress has been made identifying clutter due to anaprop there is no unique method that solves the question of data reliability without removing genuine data. The work described here relates to the development of a software application that uses a numerical weather prediction (NWP) model to obtain the temperature, humidity and pressure fields to calculate the three dimensional structure of the atmospheric refractive index structure, from which a physically based prediction of the incidence of clutter can be made. This technique can be used in conjunction with existing methods for clutter removal by modifying parameters of detectors or filters according to the physical evidence for anomalous propagation conditions. The parabolic equation method (PEM) is a well established technique for solving the equations for beam propagation in a non-uniformly stratified atmosphere, but although intrinsically very efficient, is not sufficiently fast to be practicable for near real-time modelling of clutter over the entire area observed by a typical weather radar. We demonstrate a fast hybrid PEM technique that is capable of providing acceptable results in conjunction with a high-resolution terrain elevation model, using a standard desktop personal computer. We discuss the performance of the method and approaches for the improvement of the model profiles in the lowest levels of the troposphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weather radar observations are currently the most reliable method for remote sensing of precipitation. However, a number of factors affect the quality of radar observations and may limit seriously automated quantitative applications of radar precipitation estimates such as those required in Numerical Weather Prediction (NWP) data assimilation or in hydrological models. In this paper, a technique to correct two different problems typically present in radar data is presented and evaluated. The aspects dealt with are non-precipitating echoes - caused either by permanent ground clutter or by anomalous propagation of the radar beam (anaprop echoes) - and also topographical beam blockage. The correction technique is based in the computation of realistic beam propagation trajectories based upon recent radiosonde observations instead of assuming standard radio propagation conditions. The correction consists of three different steps: 1) calculation of a Dynamic Elevation Map which provides the minimum clutter-free antenna elevation for each pixel within the radar coverage; 2) correction for residual anaprop, checking the vertical reflectivity gradients within the radar volume; and 3) topographical beam blockage estimation and correction using a geometric optics approach. The technique is evaluated with four case studies in the region of the Po Valley (N Italy) using a C-band Doppler radar and a network of raingauges providing hourly precipitation measurements. The case studies cover different seasons, different radio propagation conditions and also stratiform and convective precipitation type events. After applying the proposed correction, a comparison of the radar precipitation estimates with raingauges indicates a general reduction in both the root mean squared error and the fractional error variance indicating the efficiency and robustness of the procedure. Moreover, the technique presented is not computationally expensive so it seems well suited to be implemented in an operational environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring thunderstorms activity is an essential part of operational weather surveillance given their potential hazards, including lightning, hail, heavy rainfall, strong winds or even tornadoes. This study has two main objectives: firstly, the description of a methodology, based on radar and total lightning data to characterise thunderstorms in real-time; secondly, the application of this methodology to 66 thunderstorms that affected Catalonia (NE Spain) in the summer of 2006. An object-oriented tracking procedure is employed, where different observation data types generate four different types of objects (radar 1-km CAPPI reflectivity composites, radar reflectivity volumetric data, cloud-to-ground lightning data and intra-cloud lightning data). In the framework proposed, these objects are the building blocks of a higher level object, the thunderstorm. The methodology is demonstrated with a dataset of thunderstorms whose main characteristics, along the complete life cycle of the convective structures (development, maturity and dissipation), are described statistically. The development and dissipation stages present similar durations in most cases examined. On the contrary, the duration of the maturity phase is much more variable and related to the thunderstorm intensity, defined here in terms of lightning flash rate. Most of the activity of IC and CG flashes is registered in the maturity stage. In the development stage little CG flashes are observed (2% to 5%), while for the dissipation phase is possible to observe a few more CG flashes (10% to 15%). Additionally, a selection of thunderstorms is used to examine general life cycle patterns, obtained from the analysis of normalized (with respect to thunderstorm total duration and maximum value of variables considered) thunderstorm parameters. Among other findings, the study indicates that the normalized duration of the three stages of thunderstorm life cycle is similar in most thunderstorms, with the longest duration corresponding to the maturity stage (approximately 80% of the total time).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter our objective is to provide an overview of the effects of anomalous propagation conditions on weather radar observations, based mostly on studies performed by the authors during the last decade, summarizing results from recent publications, presentations, or unpublished material. We believe this chapter may be useful as an introductory text for graduate students, or researchers and practitioners dealing with this topic. Throughout the text a spherical symmetric atmosphere is assumed and the focus is on the occurrence of ground and sea clutter and subsequent problems for weather radar applications. Other related topics such as long-path, over-the-horizon propagation and detection of radar targets (either clutter or weather systems) at long ranges is not considered here; however readers should be aware of the potential problems these phenomena may have as range aliasing may cause these echoes appear nearer than they are ¿ for more details see the discussion about second trip echoes by Zrnic, this volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recently developed technique, polarimetric radar interferometry, is applied to tackle the problem of the detection of buried objects embedded in surface clutter. An experiment with a fully polarimetric radar in an anechoic chamber has been carried out using different frequency bands and baselines. The processed results show the ability of this technique to detect buried plastic mines and to measure their depth. This technique enables the detection of plastic mines even if their backscatter response is much lower than that of the surface clutter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente estudio se enmarca en el proyecto europeo SIBERIA. Trata de explorar el uso de imágenes radar de satélite (ERS y JERS) para la actualización de la cartografía de vegetación de zonas boreales. Se dispone de 8 imágenes de amplitud y coherencia tomadas en 1998, así como de un inventario de vegetación georreferenciado de dos pequeñas zonas. Se proponen tres tipos de clasificaciones supervisadas por el método de máxima verosimilitud. La primera con las imágenes de satélite, la segunda añadiendo algunas imágenes texturales, y la tercera utilizando sólo las imágenes de los componentes principales más significativos. Se siguen los criterios establecidos en el proyecto SIBERIA para la obtención de áreas de entrenamiento. Se propone una doble validación, por una parte vía matrices de confusión a partir de áreas de verdad-terreno obtenidas por el mismo método que las áreas de entrenamiento, y por otra parte contrastando y correlacionando las clasificaciones con los parámetros de inventario disponibles para dos pequeñas áreas de verdad-terreno. Los resultados indican una sensible mejora en la clasificación con la incorporación de imágenes texturales (la precisión aumenta de un 66% a un 75%), y señalan el parámetro biomasa como el mejor correlacionado con las clasificaciones derivadas (coeficiente de correlación r de hasta 0,49). Diferentes fuentes de error permiten augurar un margen de mejora para posteriores estudios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a hydrologic model depends on the rainfall input data, both spatially and temporally. As the spatial distribution of rainfall exerts a great influence on both runoff volumes and peak flows, the use of a distributed hydrologic model can improve the results in the case of convective rainfall in a basin where the storm area is smaller than the basin area. The aim of this study was to perform a sensitivity analysis of the rainfall time resolution on the results of a distributed hydrologic model in a flash-flood prone basin. Within such a catchment, floods are produced by heavy rainfall events with a large convective component. A second objective of the current paper is the proposal of a methodology that improves the radar rainfall estimation at a higher spatial and temporal resolution. Composite radar data from a network of three C-band radars with 6-min temporal and 2 × 2 km2 spatial resolution were used to feed the RIBS distributed hydrological model. A modification of the Window Probability Matching Method (gauge-adjustment method) was applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation by computing new Z/R relationships for both convective and stratiform reflectivities. An advection correction technique based on the cross-correlation between two consecutive images was introduced to obtain several time resolutions from 1 min to 30 min. The RIBS hydrologic model was calibrated using a probabilistic approach based on a multiobjective methodology for each time resolution. A sensitivity analysis of rainfall time resolution was conducted to find the resolution that best represents the hydrological basin behaviour.