27 resultados para RUTHENIUM VINYLIDENE COMPLEXES
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A photoactivated ruthenium(II) arene complex has been conjugated to two receptor-binding peptides, a dicarba analogue of octreotide and the Arg-Gly-Asp (RGD) tripeptide. These peptides can act as"tumor-targeting devices" since their receptors are overexpressed on the membranes of tumor cells. Both ruthenium-peptide conjugates are stable in aqueous solution in the dark, but upon irradiation with visible light, the pyridyl-derivatized peptides were selectively photodissociated from the ruthenium complex, as inferred by UV-vis and NMR spectroscopy. Importantly, the reactive aqua species generated from the conjugates, [(η6-p-cym)Ru(bpm)(H2O)]2+, reacted with the model DNA nucleobase 9-ethylguanine as well as with guanines of two DNA sequences, 5′dCATGGCT and 5′dAGCCATG. Interestingly, when irradiation was performed in the presence of the oligonucleotides, a new ruthenium adduct involving both guanines was formed as a consequence of the photodriven loss of p-cymene from the two monofunctional adducts. The release of the arene ligand and the formation of a ruthenated product with a multidentate binding mode might have important implications for the biological activity of such photoactivated ruthenium(II) arene complexes. Finally, photoreactions with the peptide-oligonucleotide hybrid, Phac-His-Gly-Met-linker-p5′dCATGGCT, also led to arene release and to guanine adducts, including a GG chelate. The lack of interaction with the peptide fragment confirms the preference of such organometallic ruthenium(II) complexes for guanine over other potential biological ligands, such as histidine or methionine amino acids.
Resumo:
We give a survey of some recent results on Grothendieck duality. We begin with a brief reminder of the classical theory, and then launch into an overview of some of the striking developments since 2005.
Resumo:
Els esteroids juguen papers clau en el creixement I el desenvolupament d’eucariotes multicel•lulars. En plantes, aquestes hormones, anomenades Brassinosteroides (BRs), estan involucrades en una gran varietat de processos biològics essencials per a les plantes. S’han descrit anteriorment dos receptors de BRs del tipus Leucine Rich Repeat Receptor Like Kinase LRR-RLK, BRASSINOSTEROID RECEPTOR LIKE 1 i 3 (BRL1 i BRL3 respectivalemt) que són homòlegs al receptor principal BRI1 i són necessaris pel desenvolupament vascular. Tot i que els principals components de la senyal ja han estat identificats pel seu homòleg més pròxim, el receptor BRI1, els complexes de BRL1 i BRL3 juntament amb els candidats co-receptors així com els components de la ruta de senyalització encara no han sigut identificats. Per tal d’entendre millor la funció molecular d’aquests receptors de BRs en la planta aquesta tesis doctoral planteja dues aproximacions: com a primera aproximació, vaig realitzar un estudi fenotípic del desenvolupament del teixit vascular a la planta model Arabidopsis thaliana (Arabidopsis). Disposant d'una amplia bateria de mutants de síntesis de la hormona i senyalització del receptor BRI1, vam analitzar quantitativament el seu patró vascular a la tija d'Arabidopsis. Vam establir els paràmetres en les plantes silvestres [Col-0 wild type, (WT)] i els vam analitzar a tots i cadascun dels mutants. Això conjuntament amb una col•laboració amb la Dr. Marta Ibañes, física de la Universitat de Barcelona que va construir un model matemàtic per simular la formació del patró vascular ens va permetre el•laborar una hipòtesis que vam demostrar experimentalment i va ser publicada a la revista PNAS. Posteriorment vam observar que les plantes knock-out d'aquests dos receptors BRL1 y BRL3 a diferència de BRI1, no tenien cap fenotip obvi en el teixit vascular de la planta adulta. Així, a continuació, per entendre quina necessitat té la planta de disposar de tres receptors tant altament homòlegs que poden percebre la mateixa hormona, vam utilitzar una aproximació bioquímica en col•laboració amb el Prof. de Vries de la Universitat de Wageningen (Holanda) per tal de purificar els complexes dels receptors in vivo i els seus interactors. Això ens ha permès entendre millor el paper funcional d'aquests receptors en la planta. Els resultats d’aquests experiments estan resumits en un article en preparació que aviat estarà en revisió.
Resumo:
Ce texte est une introduction aux feuilletages par variétés complexes et aux problèmes d'uniformisation de tels feuilletages. Nous donnons en introduction une liste fondamentale de questions naturelles sur ces objets ainsi qu'un aperçcu des résultats connus.
Resumo:
Møller-Plesset (MP2) and Becke-3-Lee-Yang-Parr (B3LYP) calculations have been used to compare the geometrical parameters, hydrogen-bonding properties, vibrational frequencies and relative energies for several X- and X+ hydrogen peroxide complexes. The geometries and interaction energies were corrected for the basis set superposition error (BSSE) in all the complexes (1-5), using the full counterpoise method, yielding small BSSE values for the 6-311 + G(3df,2p) basis set used. The interaction energies calculated ranged from medium to strong hydrogen-bonding systems (1-3) and strong electrostatic interactions (4 and 5). The molecular interactions have been characterized using the atoms in molecules theory (AIM), and by the analysis of the vibrational frequencies. The minima on the BSSE-counterpoise corrected potential-energy surface (PES) have been determined as described by S. Simón, M. Duran, and J. J. Dannenberg, and the results were compared with the uncorrected PES
Resumo:
The effect of basis set superposition error (BSSE) on molecular complexes is analyzed. The BSSE causes artificial delocalizations which modify the first order electron density. The mechanism of this effect is assessed for the hydrogen fluoride dimer with several basis sets. The BSSE-corrected first-order electron density is obtained using the chemical Hamiltonian approach versions of the Roothaan and Kohn-Sham equations. The corrected densities are compared to uncorrected densities based on the charge density critical points. Contour difference maps between BSSE-corrected and uncorrected densities on the molecular plane are also plotted to gain insight into the effects of BSSE correction on the electron density
Resumo:
Geometries, vibrational frequencies, and interaction energies of the CNH⋯O3 and HCCH⋯O3 complexes are calculated in a counterpoise-corrected (CP-corrected) potential-energy surface (PES) that corrects for the basis set superposition error (BSSE). Ab initio calculations are performed at the Hartree-Fock (HF) and second-order Møller-Plesset (MP2) levels, using the 6-31G(d,p) and D95++(d,p) basis sets. Interaction energies are presented including corrections for zero-point vibrational energy (ZPVE) and thermal correction to enthalpy at 298 K. The CP-corrected and conventional PES are compared; the unconnected PES obtained using the larger basis set including diffuse functions exhibits a double well shape, whereas use of the 6-31G(d,p) basis set leads to a flat single-well profile. The CP-corrected PES has always a multiple-well shape. In particular, it is shown that the CP-corrected PES using the smaller basis set is qualitatively analogous to that obtained with the larger basis sets, so the CP method becomes useful to correctly describe large systems, where the use of small basis sets may be necessary
Resumo:
Brain acetylcholinesterase (AChE) forms stable complexes with amyloid-beta peptide (Abeta) during its assembly into filaments, in agreement with its colocalization with the Abeta deposits of Alzheimer's brain. The association of the enzyme with nascent Abeta aggregates occurs as early as after 30 min of incubation. Analysis of the catalytic activity of the AChE incorporated into these complexes shows an anomalous behavior reminiscent of the AChE associated with senile plaques, which includes a resistance to low pH, high substrate concentrations, and lower sensitivity to AChE inhibitors. Furthermore, the toxicity of the AChE-amyloid complexes is higher than that of the Abeta aggregates alone. Thus, in addition to its possible role as a heterogeneous nucleator during amyloid formation, AChE, by forming such stable complexes, may increase the neurotoxicity of Abeta fibrils and thus may determine the selective neuronal loss observed in Alzheimer's brain.
Resumo:
The magnetic structure of the [Cu4(bpy)4(aspartate)2(H2O)3](ClO4)4·2.5 H2Ocrystal - using fractional coordinates determined at room-temperature ¿ has beenanalysed in detail. This analysis has been carried out by extending our first principlesbottom-up theoretical approach, which was initially designed to study through-spacemagnetic interactions, to handle through-bond magnetic interactions. The only input datarequired by this approach are the values of the computed JAB exchange parameters for allthe unique pairs of spin-containing centres. The results allow the magnetic structure ofthe crystal, which presents two types of isolated tetranuclear CuII clusters, to be definedin quantitative terms. Each of these clusters presents ferro and antiferromagneticinteractions, the former being stronger, although outnumbered by the latter. Thecomputed magnetic susceptibility curve shows the same qualitative features as theexperimental data. However, there are small differences that are presumed to beassociated with the use of room-temperature crystal coordinates.
Resumo:
The magnetic structure of the [Cu4(bpy)4(aspartate)2(H2O)3](ClO4)4·2.5 H2Ocrystal - using fractional coordinates determined at room-temperature ¿ has beenanalysed in detail. This analysis has been carried out by extending our first principlesbottom-up theoretical approach, which was initially designed to study through-spacemagnetic interactions, to handle through-bond magnetic interactions. The only input datarequired by this approach are the values of the computed JAB exchange parameters for allthe unique pairs of spin-containing centres. The results allow the magnetic structure ofthe crystal, which presents two types of isolated tetranuclear CuII clusters, to be definedin quantitative terms. Each of these clusters presents ferro and antiferromagneticinteractions, the former being stronger, although outnumbered by the latter. Thecomputed magnetic susceptibility curve shows the same qualitative features as theexperimental data. However, there are small differences that are presumed to beassociated with the use of room-temperature crystal coordinates.
Resumo:
Conjugates of a dicarba analogue of octreotide, a potent somatostatin agonist whose receptors are overexpressed on tumor cells, with [PtCl2(dap)] (dap = 1-(carboxylic acid)-1,2-diaminoethane) (3), [(η6-bip)Os(4-CO2-pico)Cl] (bip = biphenyl, pico = picolinate) (4), [(η6-p-cym)RuCl(dap)]+ (p-cym = p-cymene) (5), and [(η6-p-cym)RuCl(imidazole-CO2H)(PPh3)]+ (6), were synthesized by using a solid-phase approach. Conjugates 35 readily underwent hydrolysis and DNA binding, whereas conjugate 6 was inert to ligand substitution. NMR spectroscopy and molecular dynamics calculations showed that conjugate formation does not perturb the overall peptide structure. Only 6 exhibited antiproliferative activity in human tumor cells (IC50 = 63 ± 2 μM in MCF-7 cells and IC50 = 26 ± 3 μM in DU-145 cells) with active participation of somatostatin receptors in cellular uptake. Similar cytotoxic activity was found in a normal cell line (IC50 = 45 ± 2.6 μM in CHO cells), which can be attributed to a similar level of expression of somatostatin subtype-2 receptor. These studies provide new insights into the effect of receptor-binding peptide conjugation on the activity of metal-based anticancer drugs, and demonstrate the potential of such hybrid compounds to target tumor cells specifically.
Resumo:
A straightforward methodology for the synthesis of conjugates between a cytotoxic organometallic ruthenium(II) complex and amino- and guanidinoglycosides, as potential RNA-targeted anticancer compounds, is described. Under microwave irradiation, the imidazole ligand incorporated on the aminoglycoside moiety (neamine or neomycin) was found to replace one triphenylphosphine ligand from the ruthenium precursor [(η6-p-cym)RuCl(PPh3)2]+, allowing the assembly of the target conjugates. The guanidinylated analogue was easily prepared from the neomycin-ruthenium conjugate by reaction with N,N′-di-Boc-N″-triflylguanidine, a powerful guanidinylating reagent that was compatible with the integrity of the metal complex. All conjugates were purified by semipreparative high-performance liquid chromatography (HPLC) and characterized by electrospray ionization (ESI) and matrix-assisted laser desorptionionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and NMR spectroscopy. The cytotoxicity of the compounds was tested in MCF-7 (breast) and DU-145 (prostate) human cancer cells, as well as in the normal HEK293 (Human Embryonic Kidney) cell line, revealing a dependence on the nature of the glycoside moiety and the type of cell (cancer or healthy). Indeed, the neomycinruthenium conjugate (2) displayed moderate antiproliferative activity in both cancer cell lines (IC50 ≈ 80 μM), whereas the neamine conjugate (4) was inactive (IC50 ≈ 200 μM). However, the guanidinylated analogue of the neomycinruthenium conjugate (3) required much lower concentrations than the parent conjugate for equal effect (IC50 = 7.17 μM in DU-145 and IC50 = 11.33 μM in MCF-7). Although the same ranking in antiproliferative activity was found in the nontumorigenic cell line (3 2 > 4), IC50 values indicate that aminoglycoside-containing conjugates are about 2-fold more cytotoxic in normal cells (e.g., IC50 = 49.4 μM for 2) than in cancer cells, whereas an opposite tendency was found with the guanidinylated conjugate, since its cytotoxicity in the normal cell line (IC50 = 12.75 μM for 3) was similar or even lower than that found in MCF-7 and DU-145 cancer cell lines, respectively. Cell uptake studies performed by ICP-MS with conjugates 2 and 3 revealed that guanidinylation of the neomycin moiety had a positive effect on accumulation (about 3-fold higher in DU-145 and 4-fold higher in HEK293), which correlates well with the higher antiproliferative activity of 3. Interestingly, despite the slightly higher accumulation in the normal cell than in the cancer cell line (about 1.4-fold), guanidinoneomycinruthenium conjugate (3) was more cytotoxic to cancer cells (about 1.8-fold), whereas the opposite tendency applied for neomycinruthenium conjugate (2). Such differences in cytotoxic activity and cellular accumulation between cancer and normal cells open the way to the creation of more selective, less toxic anticancer metallodrugs by conjugating cytotoxic metal-based complexes such as ruthenium(II) arene derivatives to guanidinoglycosides.