10 resultados para ROS and DNA damage

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical reactions in living cells are under strict enzyme control and conform to a tightly regulated metabolic program. However, uncontrolled and potentially deleterious endogenous reactions occur, even under physiological conditions. Aging, in this chemical context, could be viewed as an entropic process, the result of chemical side reactions that chronically and cumulatively degrade the function of biological systems. Mitochondria are a main source of reactive oxygen species (ROS) and chemical sidereactions in healthy aerobic tissues and are the only known extranuclear cellular organelles in animal cells that contain their own DNA (mtDNA). ROS can modify mtDNA directly at the sugar-phosphate backbone or at the bases, producing many different oxidatively modified purines and pyrimidines, as well as single and double strand breaks and DNA mutations. In this scenario, natural selection tends to decrease the mitochondrial ROS generation, the oxidative damage to mtDNA, and the mitochondrial mutation rate in long-lived species, in agreement with the mitochondrial oxidative stress theory of aging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study addressed the contribution of acidic sphingomyelinase (ASMase) in TNF-alpha-mediated hepatocellular apoptosis. Cultured hepatocytes depleted of mitochondrial glutathione (mGSH) became sensitive to TNF-alpha, undergoing a time-dependent apoptotic cell death preceded by mitochondrial membrane depolarization, cytochrome c release, and caspase activation. Cyclosporin A treatment rescued mGSH-depleted hepatocytes from TNF-alpha-induced cell death. In contrast, mGSH-depleted hepatocytes deficient in ASMase were resistant to TNF-alpha-mediated cell death but sensitive to exogenous ASMase. Furthermore, although in vivo administration of TNF-alpha or LPS to galactosamine-pretreated ASMase(+/+) mice caused liver damage, ASMase(-/-) mice exhibited minimal hepatocellular injury. To analyze the requirement of ASMase, we assessed the effect of glucosylceramide synthetase inhibition on TNF-alpha-mediated apoptosis. This approach, which blunted glycosphingolipid generation by TNF-alpha, protected mGSH-depleted ASMase(+/+) hepatocytes from TNF-alpha despite enhancement of TNF-alpha-stimulated ceramide formation. To further test the involvement of glycosphingolipids, we focused on ganglioside GD3 (GD3) because of its emerging role in apoptosis through interaction with mitochondria. Analysis of the cellular redistribution of GD3 by laser scanning confocal microscopy revealed the targeting of GD3 to mitochondria in ASMase(+/+) but not in ASMase(-/-) hepatocytes. However, treatment of ASMase(-/-) hepatocytes with exogenous ASMase induced the colocalization of GD3 and mitochondria. Thus, ASMase contributes to TNF-alpha-induced hepatocellular apoptosis by promoting the mitochondrial targeting of glycosphingolipids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ler is a DNA-binding, oligomerizable protein that regulates pathogenicity islands in enterohemorrhagic and enteropathogenic Escherichia coli strains. Ler counteracts the transcriptional silencing effect of H-NS, another oligomerizable nucleoid-associated protein. We studied the oligomerization of Ler in the absence and presence of DNA by atomic force microscopy. Ler forms compact particles with a multimodal size distribution corresponding to multiples of 35 units of Ler. DNA wraps around Ler particles that contain more than 1516 Ler monomers. The resulting shortening of the DNA contour length is in agreement with previous measurements of the length of DNA protected by Ler in footprinting assays. We propose that the repetition unit corresponds to the number of monomers per turn of a tight helical Ler oligomer. While the repressor (H-NS) and anti-repressor (Ler) have similar DNA-binding domains, their oligomerization domains are unrelated. We suggest that the different oligomerization behavior of the two proteins explains the opposite results of their interaction with the same or proximal regions of DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first dichloroplatinum(II) conjugates of dicarba analogues of octreotide , which is expected to act as a"tumour-targeting device", have been efficiently synthesized following a stepwise solid-phase approach; these compounds emulate the mechanism of cisplatin since they form a 1,2-intrastrand cross-link with two consecutive guanines of an oligonucleotide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Olive oil consumption is protective against risk factors for cardiovascular and cancer diseases. A nutrigenomic approach was performed to assess whether changes in gene expression could occur in human peripheral blood mononuclear cells after oli ve oil ingestion at postprandial state. Six healthy male volunteers ingested, at fasting state, 50 ml of olive oil. Prior to intervention a 1-week washout period with a controlled diet and sunflower oil as the only source of fat was followed. During the 3 days before and on the intervention day, a very low-phenolic compound diet was followed. At baseline (0 h) and at post-ingestion (6 h), total RNA was isolated and gene expression (29,082 genes) was evaluated by microarray. From microarray data, nutrient-gene interactions were observed in genes related to metabolism, cellular processes, cancer, and atherosclerosis (e.g. USP48 by 2.16; OGT by 1.68-fold change) and associated processes such as inflammation (e.g. AKAP13 by 2.30; IL-10 by 1.66-fold change) and DNA damage (e.g. DCLRE1C by 1.47; POLK by 1.44- fold change). When results obtained by microarray were verified by qRT-PCR in nine genes, full concordance was achieved only in the case of up-regulated genes. Changes were observed at a real-life dose of olive oil, as it is daily consumed in some Mediterranean areas. Our results support the hypothesis that postprandial protective changes related to olive oil consumption could be mediated through gene expression changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation in cardiomyocytes. However, the pathway by which DNA degradation ensues following Bnip3 activation is not resolved. To identify the mechanism involved, we analyzed the interdependence of Bnip3, Nix and EndoG in mitochondrial damage and DNA fragmentation during experimental ischemia in neonatal rat ventricular cardiomyocytes. Our results show that the expression of EndoG and Bnip3 increases in the heart throughout development, while the caspase-dependent machinery is silenced. TUNEL-positive DNA damage, which depends on caspase activity in other cells, is caspase-independent in ischemic cardiomyocytes and ischemia-induced DNA high and low molecular weight fragmentation is blocked by repressing EndoG expression. Ischemia-induced EndoG translocation and DNA degradation are prevented by silencing the expression of Bnip3, but not Nix, or by overexpressing Bcl-xL. These data establish a link between Bnip3 and EndoG-dependent, TUNEL-positive, DNA fragmentation in ischemic cardiomyocytes in the absence of caspases, defining an alternative cell death pathway in postmitotic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stalled replication forks are sources of genetic instability. Multiple fork-remodeling enzymes are recruited to stalled forks, but how they work to promote fork restart is poorly understood. By combining ensemble biochemical assays and single-molecule studies with magnetic tweezers, we show that SMARCAL1 branch migration and DNA-annealing activities are directed by the single-stranded DNA-binding protein RPA to selectively regress stalled replication forks caused by blockage to the leading-strand polymerase and to restore normal replication forks with a lagging-strand gap. We unveil the molecular mechanisms by which RPA enforces SMARCAL1 substrate preference. E. coli RecG acts similarly to SMARCAL1 in the presence of E. coli SSB, whereas the highly related human protein ZRANB3 has different substrate preferences. Our findings identify the important substrates of SMARCAL1 in fork repair, suggest that RecG and SMARCAL1 are functional orthologs, and provide a comprehensive model of fork repair by these DNA translocases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Completion of DNA replication before mitosis is essential for genome stability and cell viability. Cellular controls called checkpoints act as surveillance mechanisms capable of detecting errors and blocking cell cycle progression to allow time for those errors to be corrected. An important question in the cell cycle field is whether eukaryotic cells possess mechanisms that monitor ongoing DNA replication and make sure that all chromosomes are fully replicated before entering mitosis, that is whether a replication-completion checkpoint exists. From recent studies with smc5–smc6 mutants it appears that yeast cells can enter anaphase without noticing that replication in the ribosomal DNA array was unfinished. smc5–smc6 mutants are proficient in all known cellular checkpoints, namely the S phase checkpoint, DNA-damage checkpoint, and spindle checkpoint, thus suggesting that none of these checkpoints can monitor the presence of unreplicated segments or the unhindered progression of forks in rDNA. Therefore, these results strongly suggest that normal yeast cells do not contain a DNA replication-completion checkpoint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleoid-associated protein H-NS is a global modulator of the expression of genes associated with adaptation to environmental changes. A variant of H-NS expressed in the R27 plasmid was previously shown to selectively modulate the expression of horizontally acquired genes, with minimal effects on core genes that are repressed by the chromosomal form of H-NS. Both H-NS proteins are formed by an oligomerization domain and a DNA-binding domain, which are connected by a linker that is highly flexible in the absence of DNA. We studied DNA binding by means of oligomer-forming chimeric proteins in which domains of the chromosomal and plasmidic variants are exchanged, as well as in monomeric truncated forms containing the DNA-binding domain and variable portions of the linker. Point mutations in the linker were also examined in full-length and truncated H-NS constructs. These experiments show that the linker region contributes to DNA binding affinity and that it is a main component of the distinct DNA binding properties of chromosomal and plasmidic H-NS. We propose that interactions between the linker and DNA limit the flexibility of the connection between H- NS oligomerization and DNA binding and provide an allosteric indirect readout mechanism to detect long- range distortions of DNA, thus enabling discrimination between core and horizontally acquired DNA.