251 resultados para RELATIVISTIC ENERGIES

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background:Average energies of nuclear collective modes may be efficiently and accurately computed using a nonrelativistic constrained approach without reliance on a random phase approximation (RPA). Purpose: To extend the constrained approach to the relativistic domain and to establish its impact on the calibration of energy density functionals. Methods: Relativistic RPA calculations of the giant monopole resonance (GMR) are compared against the predictions of the corresponding constrained approach using two accurately calibrated energy density functionals. Results: We find excellent agreement at the 2% level or better between the predictions of the relativistic RPA and the corresponding constrained approach for magic (or semimagic) nuclei ranging from 16 O to 208 Pb. Conclusions: An efficient and accurate method is proposed for incorporating nuclear collective excitations into the calibration of future energy density functionals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotopic and isotonic chains of superheavy nuclei are analyzed to search for spherical double shell closures beyond Z=82 and N=126 within the new effective field theory model of Furnstahl, Serot, and Tang for the relativistic nuclear many-body problem. We take into account several indicators to identify the occurrence of possible shell closures, such as two-nucleon separation energies, two-nucleon shell gaps, average pairing gaps, and the shell correction energy. The effective Lagrangian model predicts N=172 and Z=120 and N=258 and Z=120 as spherical doubly magic superheavy nuclei, whereas N=184 and Z=114 show some magic character depending on the parameter set. The magicity of a particular neutron (proton) number in the analyzed mass region is found to depend on the number of protons (neutrons) present in the nucleus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although ab initio calculations of relativistic Brueckner theory lead to large scalar isovector fields in nuclear matter, at present, successful versions of covariant density functional theory neglect the interactions in this channel. A new high-precision density functional DD-MEδ is presented which includes four mesons, σ, ω, δ, and ρ, with density-dependent meson-nucleon couplings. It is based to a large extent on microscopic ab initiocalculations in nuclear matter. Only four of its parameters are determined by adjusting to binding energies and charge radii of finite nuclei. The other parameters, in particular the density dependence of the meson-nucleon vertices, are adjusted to nonrelativistic and relativistic Brueckner calculations of symmetric and asymmetric nuclear matter. The isovector effective mass mp*−mn* derived from relativistic Brueckner theory is used to determine the coupling strength of the δ meson and its density dependence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive analytical expressions for the excitation energy of the isoscalar giant monopole and quadrupole resonances in finite nuclei, by using the scaling method and the extended ThomasFermi approach to relativistic mean-field theory. We study the ability of several nonlinear σω parameter sets of common use in reproducing the experimental data. For monopole oscillations the calculations agree better with experiment when the nuclear matter incompressibility of the relativistic interaction lies in the range 220260 MeV. The breathing-mode energies of the scaling method compare satisfactorily with those obtained in relativistic RPA and time-dependent mean-field calculations. For quadrupole oscillations, all the analyzed nonlinear parameter sets reproduce the empirical trends reasonably well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les problemàtiques ambientals actuals són per desgràcia un dels referents de les nostres vides quotidianes, si ens parem a pensar, la majoria d’accions que duem a terme des de que ens llevem fins que anem a dormir poden estar relacionades directa o indirectament amb el consum energètic. Realment formem part d’una societat “energeticodependent” i el problema no és exactament aquest, sinó d’on deriva la energia que utilitzem a diari, quines són les fons de producció d’aquesta energia, quins son els mecanismes receptors d’aquestes energies i quina es la seva eficiència energètica. L’estudi realitzat, ha tingut lloc al centre Puigverd de Castellar del Vallès, un centre esportiu gestionat pel Grup Ubae, a través d’una concessió municipal. En aquest estudi s’analitzen rigorosament els consums energètics del centre, separant els diferents consum d’electricitat i gas i observant les tendències anuals de cada un dels seus components. Un cop realitzat l’inventariat i l’estudi inicial, es va procedir a avaluar les diferents problemàtiques que presentava el centre i van ser classificades com a punts febles, juntament amb les seves oposades, punts forts ja existents. Finalment s’inicià la part final del projecte, que consisteix en un conjunt de propostes de millora per intentar reduir els consums energètics totals i una avaluació final de varies alternatives combinant diferents possibilitats entre les propostes de millora i analitzar les conseqüències econòmiques i ambientals de cadascuna d’elles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La sostenibilitat del model energètic de Catalunya es veu condicionada per aspectes com la dependència energètica, la seguretat de subministrament, l’eficiència energètica, els impactes ambientals i la demanda creixent. D’altra banda, la incorporació d’energia renovable en el mix energètic implica una major autonomia energètica, seguretat de subministrament a llarg termini, i eficiència energètica, així com un menor impacte ambiental. Tanmateix, la contribució en el sistema elèctric d’un volum ja important i creixent d’energia renovable requereix una complexa tasca d’integració a nivell tècnic i econòmic. Per aconseguir-ho, és necessari desenvolupar una regulació estable que complementi el procés de liberalització del sector amb l’objectiu d’acomodar la generació renovable en un model energètic sostenible. La (in)formació i participació de la demanda es presenta com una condició clau per engegar el camí cap a una nova cultura energètica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares 〈 V2 〉 and the energies of basepair triplets X G+ Y and X A+ Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B -DNA structure and show that in several important cases the couplings calculated for the idealized B -DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ∼0.07 eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The X G+ Y are by 0.5 eV more stable than X A+ Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we discuss two consecutive MERLIN observations of the X-ray binary LS I +61◦303. The first observation shows a double-sided jet extending up to about 200 AU on both sides of a central source. The jet shows a bent S-shaped struct ure similar to the one displayed by the well-known precessing jet of SS 433. The precession suggested in the first MERLIN image becomes evident in the second one, showing a one-sided bent jet significantly rotated with respect to the jet of the day before. We conclude that the derived precession of the relativistic (β=0.6) jet explains puzzling previous VLBI results. Moreover , the fact that the precession is fast could be the explanation of the never understood short term (days) variability of the associated gamma-ray source 2CG 135 + 01 / 3EG J0241 + 6103.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context.It has been proposed that the origin of the very high-energy photons emitted from high-mass X-ray binaries with jet-like features, so-called microquasars (MQs), is related to hadronic interactions between relativistic protons in the jet and cold protons of the stellar wind. Leptonic secondary emission should be calculated in a complete hadronic model that includes the effects of pairs from charged pion decays inside the jets and the emission from pairs generated by gamma-ray absorption in the photosphere of the system. Aims.We aim at predicting the broadband spectrum from a general hadronic microquasar model, taking into account the emission from secondaries created by charged pion decay inside the jet. Methods.The particle energy distribution for secondary leptons injected along the jets is consistently derived taking the energy losses into account. The spectral energy distribution resulting from these leptons is calculated after assuming different values of the magnetic field inside the jets. We also compute the spectrum of the gamma-rays produced by neutral pion-decay and processed by electromagnetic cascades under the stellar photon field. Results.We show that the secondary emission can dominate the spectral energy distribution at low energies (~1 MeV). At high energies, the production spectrum can be significantly distorted by the effect of electromagnetic cascades. These effects are phase-dependent, and some variability modulated by the orbital period is predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The COMPTEL unidentified source GRO J1411-64 was observed by INTEGRAL, and its central part, also by XMM-Newton. The data analysis shows no hint for new detections at hard X-rays. The upper limits in flux herein presented constrain the energy spectrum of whatever was producing GRO J1411-64, imposing, in the framework of earlier COMPTEL observations, the existence of a peak in power output located somewhere between 300-700 keV for the so-called low state. The Circinus Galaxy is the only source detected within the 4$\sigma$ location error of GRO J1411-64, but can be safely excluded as the possible counterpart: the extrapolation of the energy spectrum is well below the one for GRO J1411-64 at MeV energies. 22 significant sources (likelihood $> 10$) were extracted and analyzed from XMM-Newton data. Only one of these sources, XMMU J141255.6-635932, is spectrally compatible with GRO J1411-64 although the fact the soft X-ray observations do not cover the full extent of the COMPTEL source position uncertainty make an association hard to quantify and thus risky. The unique peak of the power output at high energies (hard X-rays and gamma-rays) resembles that found in the SED seen in blazars or microquasars. However, an analysis using a microquasar model consisting on a magnetized conical jet filled with relativistic electrons which radiate through synchrotron and inverse Compton scattering with star, disk, corona and synchrotron photons shows that it is hard to comply with all observational constrains. This and the non-detection at hard X-rays introduce an a-posteriori question mark upon the physical reality of this source, which is discussed in some detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of a deep search for associated radio features in the vicinity of the microquasar Cygnus X-3. The motivation behind is to find out evidence for interaction between its relativistic jets and the surrounding interstellar medium, which could eventually allow us to perform calorimetry of the total energy released by this microquasar during its flaring lifetime. Remarkably, two radio sources with mJy emission level at centimeter wavelengths have been detected in excellent alignment with the position angle of the inner radio jets. We propose that these objects could be the hot spots where the relativitic outflow collides with the ambient gas in analogy with Fanaroff-Riley II radio galaxies. These candidate hot spots are within a few arc-minutes of Cygnus X-3 and, if physically related, the full linear extent of the jet would reach tens of parsecs. We discuss here the evidence currently available to support this hypothesis based on both archival data and our own observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory and the fully quantal approach.