19 resultados para Quercus suber L.
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Cork is the bark of the cork oak tree (Quercus suber L), a renewable and biodegradable raw bioresource concentrated mainly in the Mediterranean region. Development of its potential uses as a biosorbent will require the investigation of its chemical composition; such information can be of help to understand its interactions with organic pollutants. The present study investigates the summative chemical composition of three bark layers (back, cork, and belly) of five Spanish cork samples and one cork sample from Portugal. Suberin was the main component in all the samples (21.1 to 53.1%), followed by lignin (14.8 to 31%), holocellulose (2.3 to 33.6%), extractives (7.3 to 20.4%), and ash (0.4 to 3.3%). The Kruskal-Wallis test was used to determine whether the variations in chemical composition with respect to the production area and bark layers were significant. The results indicate that, with respect to the bark layer, significant differences were found only for suberin and holocellulose contents: they were higher in the belly and cork than in the back. Based on the results presented, cork is a material with a lot of potential because of its heterogeneity in chemical composition
Resumo:
In cork oak (Quercus suber L.), recurrent embryogenesis is produced in vitro through autoembryony without exogenous plant growth regulators (PGRs); secondary embryos appear on the embryo axis but seldom on cotyledons. Focusing mainly on the histological origin of neoformations, we investigated the influence of the embryo axis and exogenous PGRs on the embryogenic potential of somatic embryo cotyledons. Isolated cotyledons of somatic embryos became necrotic when cultured on PGR-free medium but gave secondary embryos when cultured on media containing benzyladenine and naphthaleneacetic acid. Cotyledons of cork oak somatic embryos are competent to give embryogenic responses. Isolated cotyledons without a petiole showed a lower percentage of embryogenic response than did those with a petiole. In petioles, somatic embryos arose from inner parenchyma tissues following a multicellular budding pattern. Joined to the embryo axis, cotyledons did not show morphogenic responses when cultured on PGR-free medium but revealed budlike and phylloid formations when cultured on medium with PGRs. The different morphogenic behavior displayed by somatic cotyledons indicates an influence of the embryo axis and indicates a relationship between organogenic and embryogenic regeneration pathways
Resumo:
L’objecte d’aquest treball ha estat l’ecologia del foc del Quercus suber L., concretament la resposta de les suredes davant del foc. Aixà estudiar si és possible l’ús del foc per a la gestió de les suredes. Com poder posar xifres a la mortalitat després dels incendis, diferenciant les zones d’alta i de baixa intensitat. S’ha pogut veure que la mortalitat resta sols significativa per als arbres joves.
La influència del foc i la gestió en la regeneració dels boscos de Quercus suber de l'Alt EmpordÃ
Resumo:
• Quercus ilex L., the dominant species in Mediterranean forests and one with a great capacity for resprouting after disturbances, is threatened by the expected increase in fire frequency and drought associated with climate change. • The aim of this study was to determine the contribution of photosynthesis limitants, especially mesophyll conductance (gmes ) during this species’ resprouting and under summer drought. • Resprouts showed 5.3-fold increased gmes and 3.8-fold increased stomatal conductance (gs) atmidday with respect to leaves of undisturbed individuals. With increased drought, structural changes (decreased density and increased thickness) in resprouts contributed to the observed higher photosynthesis and increased gmes. However, gmes only partially depended on leaf structure, and was also under physiological control. Resprouts also showed lower non-stomatal limitations (around 50% higher carboxylation velocity (Vc,max) and capacity for ribulose-1,5-bisphosphate regeneration (Jmax)). A significant contribution of gmes to leaf carbon isotope discrimination values was observed. • gmes exhibits a dominant role in photosynthesis limitation in Q. ilex and is regulated by factors other than morphology. During resprouting after disturbances, greater capacity to withstand drought, as evidenced by higher gmes , gs and lower non-stomatal limitants, enables increased photosynthesis and rapid growth.
Resumo:
We examined root morphological and functional differences caused by restrictions imposed to vertical growth in the root system of holm oak (Quercus ilex L.) seedlings to assess the consequences of using nursery containers in the development of a confined root system for this species. Thus, root morphological, topological and functional parameters, including hydraulic conductance per leaf unit surface area (K $_{\rm RL})$, were investigated in one-year seedlings cultivated in three PVC tubes differing in length (20, 60 and 100 cm). Longer tubes showed greater projected root area, root volume, total and fine root lengths, specific root length (SRL) and K$_{\rm RL}$ values than did shorter tubes. On the other hand, the length of coarse roots (diameter > 4.5 mm) and the average root diameter were greater in shorter tubes. The strong positive correlation found between K$_{\rm RL}$ and SRL (r=+0.69; P<0.001) indicated that root thickness was inversely related to water flow through the root system. We concluded that root systems developed in longer tubes are more efficient for plant water uptake and, therefore, changes in root pattern produced in standard forest containers (i.e. about 20 cm length) may in fact prevent a proper establishment of the holm oak in the field, particularly in xeric environments.
Resumo:
Chromium (VI) removal and its reduction to chromium (III) from aqueous solution by untreated and heat-treated Quercus cerris and heat-treated Quercus suber black agglomerate cork granules was investigated. Initial screening studies revealed that among the sorbents tested, untreated Q. cerris and Q. suber black agglomerate are the most efficient in the removal of Cr(VI) ions and were selected for adsorption essays. Heat treatment adversely affected chromium adsorption and chromium (VI) reduction in Q. cerris cork. The highest metal uptake was found at pH 3.0 for Q. cerris and pH 2.0 for black agglomerate. The experimental data fitted the Langmuir model and the calculated qmax was 22.98 mg/g in black agglomerate and 21.69 mg/g in untreated Q. cerris cork. The FTIR results indicated that while in black agglomerate, lignin is the sole component responsible for Cr(VI) sorption, and in untreated Q. cerris cork, suberin and polysaccharides also play a significant role on the sorption. The SEM-EDX results imply that chromium has a homogenous distribution within both cork granules. Also, phloemic residues in Q. cerris granules showed higher chromium concentration. The results obtained in this study show that untreated Q. cerris and black agglomerate cork granules can be an effective and economical alternative to more costly materials for the treatment of liquid wastes containing chromium
Resumo:
La presència de pesticides en el medi ambient pot comportar efectes nocius pel propi medi i la salut humana, fet que, en alguns casos, converteix en necessà ria la seva eliminació. Un dels mètodes utilitzats per dur a terme aquesta eliminació és la sorció de contaminats sobre materials adsorbents. Per tal de fer d’aquest mètode un procés sostenible cal investigar nous materials capaços de retenir els contaminants. El suro és la part més externa de l’escorça de l’alzina surera: Quercus Suber L. S’extreu cada 5- 10 anys depenent de la regió i es caracteritza per ser una font natural, renovable i biodegradable amb una heterogènia composició quÃmica que el converteix en un material potencialment apte com a adsorbent d’un ampli rang de contaminants. En aquest context, l’objectiu principal d’aquest treball és investigar l’afinitat d’adsorció del suro amb quatre pesticides de diferent hidrofobicitat i estructura quÃmica i estudiar el paper que hi juguen els seus compostos quÃmics (extractius, suberina, lignina i polisacà rids) en aquest procés de sorció. Els pesticides investigats han estat: Metamitron: poc hidrofòbic (logKow = 0.83) i de carà cter molecular, Alaclor: moderadament hidrofòbic (logKow = 2.80) i de carà cter iònic (pKa = 0.62), 2,4-D: moderadament hidrofòbic (logKow = 2.81) i de carà cter iònic (pKa = 2.64) i Clorpirifos: molt hidrofòbic (logKow = 4.92) i de carà cter molecular
Resumo:
Myzocallis (Lineomyzocallis) walshii (Monell) es un pulgón nativo del este de Nor- teamérica que se detectó por primera vez en España en 1995 y cuyo principal huésped es el roble americano (Quercus rubra L.). Los robles americanos se emplean como árbol ornamental en ambientes urbanos en diversas ciudades españolas, donde las proliferaciones del pulgón generan gran cantidad de melaza provocando daños estéticos y de confort. Durante 2008 y 2009 se efectuó el seguimiento de la fenologÃa y de la densidad de población de M. walshii y de otros pulgones en robles americanos plantados en alineación en la ciudad de Girona y se estimaron los daños producidos. Asimismo se valoró la relación entre la abundancia de pulgones y los daños ocasionados. Finalmente se identificaron los principales grupos de enemigos naturales, a la vez que se cuantificó su abundancia. M. walshii fue la única especie de pulgón que afectó a los robles americanos. Este pulgón pasa el invierno en forma de huevo, las primeras ninfas surgen a la salida de hojas y las distintas generaciones de individuos partenogenéticos se mantienen a niveles variables hasta mediados de otoño, cuando aparecen las formas sexuales. Existe una correlación positiva entre la abundancia del pulgón y los daños de confort, incluso cuando la densidad es baja. Parasitoides y coccinélidos fueron los enemigos naturales más frecuentemente registrados, aunque su abundancia fue relativamente escasa. Se discute el papel de las condiciones climáticas y de los enemigos naturales en la determinación de la abundancia de M. walshii.
Resumo:
Abstract: The use of an enriched CO2 atmosphere in tree nurseries has been envisaged as a promising technique to increase productivity and to obtain seedlings with a higher root/shoot ratio, an essential trait to respond to water stress in Mediterranean-type ecosystems. In that framework, we have analyzed the effects of three levels of atmospheric CO2 concentration (350, 500 and 700 ppm) on the germination rate, growth and morphology of seedlings of two Mediterranean oaks used in reforestation programs: the evergreen Quercus ilex L. and the deciduous Quercus cerrioides Wilk. et Costa. CO2 enrichment increased the germination rate of Q. cerrioides (from 70±7 to 81±3 %) while it decreased that of Q. ilex (from 71±10 to 41±12 %). Seedlings of both species increased approximately 60% their total biomass in response to CO2 enrichment but at two different CO2 concentrations: 500 ppm for Q. cerrioides and 700 ppm for Q. ilex. This increase in seedlings biomass was entirely due to an augmentation of root biomass. Considering germination and biomass partitioning, an enriched CO2 atmosphere might not be appropriate for growing Mediterranean evergreen oaks, such as Q. ilex, since it reduces acorn germination and the only gains in root biomass occur at a high concentration (700 ppm). On the other hand, a moderate CO2 enrichment (500 ppm) appears as a promising nursery technique to stimulate the germination, growth and root/shoot ratio of deciduous oaks, such as Q. cerrioides. Resumen: El uso de una atmósfera enriquecida en CO2 durante la fase de vivero puede contribuir a aumentar la producción viverÃÂstica, a la vez que ayudar a conseguir plántulas con una mayor relación biomasa subterránea/biomasa aérea, más adecuadas para hacer frente al severo estrés hÃÂdrico que generalmente limita el éxito de las repoblaciones en el clima Mediterráneo. En este estudio hemos analizado el efecto de tres niveles de abonado carbónico atmosférico (350, 500 y 750 ppm) en la germinación y morfologÃÂa de plántulas de encina (Quercus ilex) y roble cerrioide (Quercus cerrioides). Una atmósfera enriquecida en CO2 incrementó la germinación de Q. cerrioides (de 70±7 a 81±3 %) mientras que disminuyó la de Q. ilex (de 71±10 a 41±12 %). Las plántulas de ambas especies incrementaron aproximadamente un 60% su biomasa en respuesta a una mayor concentración de CO2, aunque esta respuesta se produjo a diferentes dosis: 500 ppm en Q. cerrioides y 700 ppm en Q. ilex. El aumento en la biomasa total de las plántulas se debió enteramente a un mayor desarrollo de su sistema radical, Considerando tanto la germinación como los efectos sobre la relación biomasa subterránea/biomasa aérea, una atmósfera enriquecida en CO2 no parece ser un tratamiento adecuado para la producción en vivero de plántulas de Q.ilex, puesto que diminuye su germinación y solo aumenta su sistema radicular a dosis muy elevadas (700 ppm). Por el contrario, un aumento moderado en la concentración de CO2 (500 ppm) aparece como una técnica interesante para estimular el crecimiento y obtener plántulas de Q. cerrioides con un sistema radical más desarrollado.
Resumo:
We report the results of magnetization and 57Fe Mössbauer spectroscopy measurements performed in the temperature range 5-300 K on composites containing iron¿oxide nanoparticles encased in polystyrene type resins. After carrying out a suitable field treatment in order to decouple the particles from the matrix, a fraction of the particles freely rotate in response to an applied magnetic field
Resumo:
Cultivation of black truffle, Tuber melanosporum Vitt., has become an important agricultural alternative in rural Mediterranean regions due to its success in relatively harsh conditions, its high market value and diminishing production in natural areas. In addition, truffle cultivation requires relatively low agricultural inputs, promotes reforestation and economic restoration of rural lands and land-use stability. However, there remain major issues regarding the management practices to ensure successful black truffle production. We therefore conducted an experiment to evaluate 3 levels of irrigation based on monthly water deficit and the effects of currently applied weed control systems and fertilization. Treatment effects were evaluated by examining the mycorrhizal status of out-planted 1-yr-old Quercus ilex L. seedlings and seedling growth parameters after 18 months in 3 distinct experimental truffle plantations located in the foothills of the Spanish Pyrenees. We found that replacing one-half of the water deficit of the driest month (moderate irrigation) promoted the proliferation of T. melanosporum mycorrhizae, while high irrigation reduced fine root production and truffle mycorrhizae. Glyphosate weed control improved seedling survival by up to 16% over control seedlings without jeopardizing truffle mycorrhizae in the first year. Fertilization did not improve seedling growth or influence its mycorrhizal status. We describe the persistent relationship between this ectomycorrhizal fungus and Q. ilex by quantifying old and new mycorrhizae and we discuss the ecological implications of the symbiosis.
Resumo:
Typical Talaromyces ascomata were observed on dry Quercus suber leaf litter amongst the characteristic synnemata of Penicillium aureocephalum, and they appear to represent the sexual state of the latter species. The species is a synonym of the older Lasioderma flavovirens, and we propose the new combination Talaromyces flavovirens. Lectotype and epitype specimens are designated for this name. The defining characters of the asexual state include yellow, short-stalked, mycetozoan-like synnemata with an unusual, almost closed terminal head of penicillate conidiophores intermixed with sinuous hyphae, and dark green conidia. Ascomata could not be induced in culture, but PCR amplifications of mating-type genes indicate the species is heterothallic. In nature, ascocarp initials appear to be antheridia coiled around clavate ascogonia, similar to those of T. flavus, and the thick-walled, spiny ascospores are also similar to those of T. flavus. ITS barcodes and β-tubulin sequences place T. flavovirens in a clade with T. apiculatus, T. flavus, T. funiculosus, T. galapagensis, T. pinophilus, T. macrosporus, and seven other species.
Resumo:
Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 C) or freezing temperatures (< 0 C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc,max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc,max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a stronger winter effect on sunlit leaves in comparison to shaded leaves. Our results generally agreed with the previous classifications of photoinhibition-tolerant (P. halepensis) and photoinhibitionavoiding (Q. ilex) species on the basis of their susceptibility to dynamic photoinhibition, whereas A. unedo was the least tolerant to photoinhibition, which was chronic in this species. Q. ilex and P. halepensis seem to follow contrasting photoprotective strategies. However, they seemed equally successful under the prevailing conditions exhibiting an adaptive advantage over A. unedo. These results show that our understanding of the dynamics of interspecific competition in Mediterranean ecosystems requires consideration of the physiological behaviour during winter which may have important implications for long-term carbon budgets and growth trends.
Resumo:
Understanding the factors controlling fine root respiration (FRR) at different temporal scales will help to improve our knowledge about the spatial and temporal variability of soil respiration (SR) and to improve future predictions of CO2 effluxes to the atmosphere. Here we present a comparative study of how FRR respond to variability in soil temperature and moisture in two widely spread species, Scots pines (Pinus sylvestris L.) and Holm-oaks (HO; Quercus ilex L.). Those two species show contrasting water use strategies during the extreme summer-drought conditions that characterize the Mediterranean climate. The study was carried out on a mixed Mediterranean forest where Scots pines affected by drought induced die-back are slowly being replaced by the more drought resistant HO. FRR was measured in spring and early fall 2013 in excised roots freshly removed from the soil and collected under HO and under Scots pines at three different health stages: dead (D), defoliated (DP) and non-defoliated (NDP). Variations in soil temperature, soil water content and daily mean assimilation per tree were also recorded to evaluate FRR sensibility to abiotic and biotic environmental variations. Our results show that values of FRR were substantially lower under HO (1.26 ± 0.16 microgram CO2 /groot·min) than under living pines (1.89 ± 0.19 microgram CO2 /groot·min) which disagrees with the similar rates of soil respiration previously observed under both canopies and suggest that FRR contribution to total SR varies under different tree species. The similarity of FRR rates under HO and DP furthermore confirms other previous studies suggesting a recent Holm-oak root colonization of the gaps under dead trees. A linear mixed effect model approach indicated that seasonal variations in FRR were best explained by soil temperature (p<0.05) while soil moisture was not exerting any direct control over FRR, despite the low soil moisture values during the summer sampling. Plant assimilation rates were positively related to FRR explaining part of the observed variability (p<0.01). However the positive relations of FRR with plant assimilation occurred mainly during spring, when both soil moisture and plant assimilation rates were higher. Our results finally suggest that plants might be able to maintain relatively high rates of FRR during the sub-optimal abiotic and biotic summer conditions probably thanks to their capacity to re-mobilize carbon reserves and their capacity to passively move water from moister layers to upper layers with lower water potentials (where the FR were collected) by hydraulic lift.