20 resultados para Quartz microstructures
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
CoFe-Ag-Cu granular films, prepared by rf sputtering, displayed magnetic domain microstructures for ferromagnetic concentrations above about 32% at, and below the percolation threshold. All samples have a fcc structure with an (111) texture perpendicular to the film plane. Magnetic force microscopy (MFM) showed a variety of magnetic domain microstructures, extremely sensitive to the magnetic history of the sample, which arise from the balance of the ferromagnetic exchange, the dipolar interactions and perpendicular magnetocrystalline anisotropy, MFM images indicate that in virgin samples, magnetic bubble domains with an out-of-plane component of the magnetization are surrounded by a quasicontinuous background of opposite magnetization domains. The application of a magnetic field in different geometries drastically modifies the microstructure of the system in the remanent state: i) for an in-plane field, the MFM images show that most of the magnetic moments are aligned along the film plane, ii) for an out-of-plane field, the MFM signal increases about one order of magnitude, and out-of-plane striped domains with alternating up and down magnetization are stabilized. Numerical simulations show that a variety of metastable domain structures (similar to those observed experimentally) can be reached, depending on magnetic history, in systems with competing perpendicular anisotropy, exchange and dipolar interactions.
Resumo:
An example of the relationship that exist between the preferred crystaliografic orientation of quartz grains and the attitude of the mylonite foliation of quartz-feldspar mylonites is described. These rocks are the result of the inhomogeneous deformation under low-grade metamorphic conditions of a late Hercynian granodiorite, intruded into the gneisses of the slopes of the Canig massif (Eastern Pyrenees). The Costabona mylonites have a quartz c-axis fabric in pseudo-twogirdles symmetrical with respect to the mylonite foliation and perpendicular to the shearband systems which produce an extensional crenulation of the mylonite foliation.
Resumo:
The two independent components of the gyration tensor of quartz, g11 and g33, have been spectroscopically measured using a transmission two-modulator generalized ellipsometer. The method is used to determine the optical activity in crystals in directions other than the optic axis, where the linear birefringence is much larger than the optical activity.
Resumo:
Background: Air pollution has become an important issue worldwide due to its adverse health effects. Among the different air contaminants, volatile organic compounds (VOCs) are liquids or solids with a high vapor pressure at room temperature that are extremely dangerous for human health. Removal of these compounds can be achieved using nanomaterials with tailored properties such as carbon nanotubes. Methods: Vertically-aligned multiwall carbon nanotubes (CNTs) were successfully grown on quartz filters by means of plasma enhanced chemical vapor deposition (PECVD). Furthermore, a plasma treatment was performed in order to modify the surface properties of the CNTs. The adsorption/desorption processes of three chlorinated compounds (trichloroethylene, 1,2-dichlorobenzene and chloroform) on the CNTs were studied using mass spectrometry measurements with a residual gas analyzer. Results: The adsorption capability of the CNTs increased after functionalization of their surface with a water plasma treatment. In addition, it was found that the presence of aromatic rings, water solubility and polarity of the VOCs play an important role on the adsorption/desorption kinetics at the CNTs surface. Conclusions: This study demonstrates the applicability of CNTs deposited on quartz filters for the removal or selective detection of volatile organic compounds (VOCs). The presence of aromatic rings in VOCs results in π -stacking interactions with a significant increase of their adsorption. On the other hand, it was found that CNTs surface interactions increase with water solubility and polarity of the VOC.
Resumo:
Quartz tuning forks are extremely good resonators and their use is growing in scanning probe microscopy. Nevertheless, only a few studies on soft biological samples have been reported using these probes. In this work, we present the methodology to develop and use these nanosensors to properly work with biological samples. The working principles, fabrication and experimental setup are presented. The results in the nanocharacterization of different samples in different ambients are presented by using different working modes: amplitude modulation with and without the use of a Phase-Locked Loop (PLL) and frequency modulation. Pseudomonas aeruginosa bacteria are imaged in nitrogen using amplitude modulation. Microcontact printed antibodies are imaged in buffer using amplitude modulation with a PLL. Finally, metastatic cells are imaged in air using frequency modulation.
Resumo:
Quartz Tuning Fork (QTF)-based Scanning Probe Microscopy (SPM) is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of the QTF electrically excited with two free prongs. The model goes beyond the state-of-the-art of numerical simulations currently found in the literature for this QTF configuration. We present the first numerical analysis of both the electrical and mechanical behavior of QTF devices. Experimental measurements obtained with 10 units of the same model of QTF validate the finite element model with a good agreement.
Resumo:
Sediment composition is mainly controlled by the nature of the source rock(s), and chemical (weathering) and physical processes (mechanical crushing, abrasion, hydrodynamic sorting) during alteration and transport. Although the factors controlling these processes are conceptually well understood, detailed quantification of compositional changes induced by a single process are rare, as are examples where the effects of several processes can be distinguished. The present study was designed to characterize the role of mechanical crushing and sorting in the absence of chemical weathering. Twenty sediment samples were taken from Alpine glaciers that erode almost pure granitoid lithologies. For each sample, 11 grain-size fractions from granules to clay (ø grades &-1 to &9) were separated, and each fraction was analysed for its chemical composition.The presence of clear steps in the box-plots of all parts (in adequate ilr and clr scales) against ø is assumed to be explained by typical crystal size ranges for the relevant mineral phases. These scatter plots and the biplot suggest a splitting of the full grain size range into three groups: coarser than ø=4 (comparatively rich in SiO2, Na2O, K2O, Al2O3, and dominated by “felsic” minerals like quartz and feldspar), finer than ø=8 (comparatively rich in TiO2, MnO, MgO, Fe2O3, mostly related to “mafic” sheet silicates like biotite and chlorite), and intermediate grains sizes (4≤ø &8; comparatively rich in P2O5 and CaO, related to apatite, some feldspar).To further test the absence of chemical weathering, the observed compositions were regressed against three explanatory variables: a trend on grain size in ø scale, a step function for ø≥4, and another for ø≥8. The original hypothesis was that the trend could be identified with weathering effects, whereas each step function would highlight those minerals with biggest characteristic size at its lower end. Results suggest that this assumption is reasonable for the step function, but that besides weathering some other factors (different mechanical behavior of minerals) have also an important contribution to the trend.Key words: sediment, geochemistry, grain size, regression, step function
Resumo:
There is almost not a case in exploration geology, where the studied data doesn’tincludes below detection limits and/or zero values, and since most of the geological dataresponds to lognormal distributions, these “zero data” represent a mathematicalchallenge for the interpretation.We need to start by recognizing that there are zero values in geology. For example theamount of quartz in a foyaite (nepheline syenite) is zero, since quartz cannot co-existswith nepheline. Another common essential zero is a North azimuth, however we canalways change that zero for the value of 360°. These are known as “Essential zeros”, butwhat can we do with “Rounded zeros” that are the result of below the detection limit ofthe equipment?Amalgamation, e.g. adding Na2O and K2O, as total alkalis is a solution, but sometimeswe need to differentiate between a sodic and a potassic alteration. Pre-classification intogroups requires a good knowledge of the distribution of the data and the geochemicalcharacteristics of the groups which is not always available. Considering the zero valuesequal to the limit of detection of the used equipment will generate spuriousdistributions, especially in ternary diagrams. Same situation will occur if we replace thezero values by a small amount using non-parametric or parametric techniques(imputation).The method that we are proposing takes into consideration the well known relationshipsbetween some elements. For example, in copper porphyry deposits, there is always agood direct correlation between the copper values and the molybdenum ones, but whilecopper will always be above the limit of detection, many of the molybdenum values willbe “rounded zeros”. So, we will take the lower quartile of the real molybdenum valuesand establish a regression equation with copper, and then we will estimate the“rounded” zero values of molybdenum by their corresponding copper values.The method could be applied to any type of data, provided we establish first theircorrelation dependency.One of the main advantages of this method is that we do not obtain a fixed value for the“rounded zeros”, but one that depends on the value of the other variable.Key words: compositional data analysis, treatment of zeros, essential zeros, roundedzeros, correlation dependency
Resumo:
Silica speleothems take differenr forms such as cylindrical stems growing from either the floor or the ceiling in granitic caves. Mineralogically they are opal-A and accumulate in successive layers with a whiskery druse tip formed by gypsum crystals. Initially they are porous but progressively become infilled by opal precipitation. This results in formation of solid speleothems. their size is only a few millimetres long. Bacterial activity accelerate quartz dissolution
Resumo:
The Virulundo carbonatite in Angola, one of the biggest in the world, contains pyrochlore as an accessory mineral in all of the carbonatite units (calciocarbonatites, ferrocarbonatites, carbonatite breccias, trachytoids). The composition of the primary pyrochlore crystals is very close to fluornatrocalciopyrochlore in all these units. High-temperature hydrothermal processes caused the pseudomorphic replacement of the above crystals by a second generation of pyrochlore, characterized by lower F and Na contents. Low-temperature hydrothermal replacement of the above pyrochlores, associated with production of quartz-carbonates-fluorite veins, controled the development of a third generation of pyrochlore, characterized by high Sr contents. Finally, supergene processes produced the development of a secondary paragenesis in the carbonatite, consisting in late carbonates, goethite, hollandite and REE minerals (mainly synchysite-(Ce), britholite-(Ce), britholite-(La), cerite-(Ce)). Separation of Ce from the other REE was allowed by oxidizing conditions. Therefore, Ce4+ was also incorporated into a late generation of pyrochlore, which is also strongly enriched in Ba and strongly depleted in Ca and Na
Resumo:
A new approach to the local measurement of residual stress in microstructures is described in this paper. The presented technique takes advantage of the combined milling-imaging features of a focused ion beam (FIB) equipment to scale down the widely known hole drilling method. This method consists of drilling a small hole in a solid with inherent residual stresses and measuring the strains/displacements caused by the local stress release, that takes place around the hole. In the presented case, the displacements caused by the milling are determined by applying digital image correlation (DIC) techniques to high resolution micrographs taken before and after the milling process. The residual stress value is then obtained by fitting the measured displacements to the analytical solution of the displacement fields. The feasibility of this approach has been demonstrated on a micromachined silicon nitride membrane showing that this method has high potential for applications in the field of mechanical characterization of micro/nanoelectromechanical systems.
Resumo:
Thermal crystallization experiments carried out using calorimetry on several a-Si:H materials with different microstructures are reported. The samples were crystallized during heating ramps at constant heating rates up to 100 K/min. Under these conditions, crystallization takes place above 700 C and progressively deviates from the standard kinetics. In particular, two crystallization processes were detected in conventional a-Si:H, which reveal an enhancement of the crystallization rate. At100 K/min, such enhancement is consistent with a diminution of the crystallization time by a factor of 7. In contrast, no systematic variation of the resulting grain size was observed. Similar behavior was also detected in polymorphous silicon and silicon nanoparticles, thus showing that it is characteristic of a variety of hydrogenated amorphous silicon materials.
Resumo:
The Oligocene deposits of Montgat are integrated in a small outcrop made up of Cenozoic and Mesozoic rocks located in the Garraf-Montnegre horst, close to the major Barcelona fault. The Oligocene of Montgat consists of detrital sediments of continental origin mainly deposited in alluvial fan environments; these deposits are folded and affected by thrusts and strike-slip faults. They can be divided in two lithostratigraphic units separated by a minor southwest-directed thrust: (i) the Turó de Montgat Unit composed of litharenites and lithorudites with high contents of quartz, feldspar, plutonic and limestone rock fragments; and (ii) the Pla de la Concòrdia Unit composed of calcilitharenites and calcilithorudites with high contents of dolosparite and dolomicrite rock fragments. The petrological composition of both units indicates that sediments were derived from the erosion of Triassic (Buntsandstein, Muschelkalk and Keuper facies), Jurassic and Lower Cretaceous rocks (Barremian to Aptian in age). Stratigraphic and petrological data suggest that these units correspond to two coalescent alluvial fans with a source area located northwestwards in the adjoining Collserola and Montnegre inner areas. Micromammal fossils (Archaeomys sp.) found in a mudstone layer of the Pla de la Concòrdia Unit assign a Chattian age (Late Oligocene) to the studied materials. Thus, the Montgat deposits are the youngest dated deposits affected by the contractional deformation that led to the development of the Catalan Intraplate Chain. Taking into account that the oldest syn-rift deposits in the Catalan Coastal Ranges are Aquitanian in age, this allows to precise that the change from a compressive to an extensional regime in this area took place during latest Oligocene-earliest Aquitanian times. This age indicates that the onset of crustal extension related to the opening of the western Mediterranean Basin started in southern France during latest Eocene-early Oligocene and propagated southwestward, affecting the Catalan Coastal Ranges and the northeastern part of the Valencia trough during the latest Chattian-earliest Aquitanian times.
Resumo:
The Oligocene deposits of Montgat are integrated in a small outcrop made up of Cenozoic and Mesozoic rocks located in the Garraf-Montnegre horst, close to the major Barcelona fault. The Oligocene of Montgat consists of detrital sediments of continental origin mainly deposited in alluvial fan environments; these deposits are folded and affected by thrusts and strike-slip faults. They can be divided in two lithostratigraphic units separated by a minor southwest-directed thrust: (i) the Turó de Montgat Unit composed of litharenites and lithorudites with high contents of quartz, feldspar, plutonic and limestone rock fragments; and (ii) the Pla de la Concòrdia Unit composed of calcilitharenites and calcilithorudites with high contents of dolosparite and dolomicrite rock fragments. The petrological composition of both units indicates that sediments were derived from the erosion of Triassic (Buntsandstein, Muschelkalk and Keuper facies), Jurassic and Lower Cretaceous rocks (Barremian to Aptian in age). Stratigraphic and petrological data suggest that these units correspond to two coalescent alluvial fans with a source area located northwestwards in the adjoining Collserola and Montnegre inner areas. Micromammal fossils (Archaeomys sp.) found in a mudstone layer of the Pla de la Concòrdia Unit assign a Chattian age (Late Oligocene) to the studied materials. Thus, the Montgat deposits are the youngest dated deposits affected by the contractional deformation that led to the development of the Catalan Intraplate Chain. Taking into account that the oldest syn-rift deposits in the Catalan Coastal Ranges are Aquitanian in age, this allows to precise that the change from a compressive to an extensional regime in this area took place during latest Oligocene-earliest Aquitanian times. This age indicates that the onset of crustal extension related to the opening of the western Mediterranean Basin started in southern France during latest Eocene-early Oligocene and propagated southwestward, affecting the Catalan Coastal Ranges and the northeastern part of the Valencia trough during the latest Chattian-earliest Aquitanian times.
Resumo:
Thermal crystallization experiments carried out using calorimetry on several a-Si:H materials with different microstructures are reported. The samples were crystallized during heating ramps at constant heating rates up to 100 K/min. Under these conditions, crystallization takes place above 700 C and progressively deviates from the standard kinetics. In particular, two crystallization processes were detected in conventional a-Si:H, which reveal an enhancement of the crystallization rate. At100 K/min, such enhancement is consistent with a diminution of the crystallization time by a factor of 7. In contrast, no systematic variation of the resulting grain size was observed. Similar behavior was also detected in polymorphous silicon and silicon nanoparticles, thus showing that it is characteristic of a variety of hydrogenated amorphous silicon materials