4 resultados para QUBIT
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Aquest document pretén donar una visió del desenvolupament dels computadors electrònics i dels components que els han fet possibles. Dintre de les opcions de futur en computació, també intenta donar una visió de les bases en que es fonamenta la computació quàntica.
Resumo:
We present optimal measuring strategies for an estimation of the entanglement of unknown two-qubit pure states and of the degree of mixing of unknown single-qubit mixed states, of which N identical copies are available. The most general measuring strategies are considered in both situations, to conclude in the first case that a local, although collective, measurement suffices to estimate entanglement, a nonlocal property, optimally.
Resumo:
In the quest to completely describe entanglement in the general case of a finite number of parties sharing a physical system of finite-dimensional Hilbert space an entanglement magnitude is introduced for its pure and mixed states: robustness. It corresponds to the minimal amount of mixing with locally prepared states which washes out all entanglement. It quantifies in a sense the endurance of entanglement against noise and jamming. Its properties are studied comprehensively. Analytical expressions for the robustness are given for pure states of two-party systems, and analytical bounds for mixed states of two-party systems. Specific results are obtained mainly for the qubit-qubit system (qubit denotes quantum bit). As by-products local pseudomixtures are generalized, a lower bound for the relative volume of separable states is deduced, and arguments for considering convexity a necessary condition of any entanglement measure are put forward.
Resumo:
We present a family of 3-qubit states to which any arbitrary state can be depolarized. We fully classify those states with respect to their separability and distillability properties. This provides a sufficient condition for nonseparability and distillability for arbitrary states. We generalize our results to N-particle states.