30 resultados para Q-orthogonal polynomials
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The main aim of this short paper is to advertize the Koosis theorem in the mathematical community, especially among those who study orthogonal polynomials. We (try to) do this by proving a new theorem about asymptotics of orthogonal polynomi- als for which the Koosis theorem seems to be the most natural tool. Namely, we consider the case when a SzegÄo measure on the unit circumference is perturbed by an arbitrary measure inside the unit disk and an arbitrary Blaschke sequence of point masses outside the unit disk.
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
We compute the exact vacuum expectation value of 1/2 BPS circular Wilson loops of TeX = 4 U(N) super Yang-Mills in arbitrary irreducible representations. By localization arguments, the computation reduces to evaluating certain integrals in a Gaussian matrix model, which we do using the method of orthogonal polynomials. Our results are particularly simple for Wilson loops in antisymmetric representations; in this case, we observe that the final answers admit an expansion where the coefficients are positive integers, and can be written in terms of sums over skew Young diagrams. As an application of our results, we use them to discuss the exact Bremsstrahlung functions associated to the corresponding heavy probes.
Resumo:
A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on a distance matrix. For a particular distance, these dimensions are principal components. Then some properties are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined and illustrated with copulas. It is shown that the dimension can have the power of continuum.
Resumo:
A detailed mathematical analysis on the q = 1/2 non-extensive maximum entropydistribution of Tsallis' is undertaken. The analysis is based upon the splitting of such adistribution into two orthogonal components. One of the components corresponds to theminimum norm solution of the problem posed by the fulfillment of the a priori conditionson the given expectation values. The remaining component takes care of the normalizationconstraint and is the projection of a constant onto the Null space of the "expectation-values-transformation"
Resumo:
It is known that, in a locally presentable category, localization exists with respect to every set of morphisms, while the statement that localization with respect to every (possibly proper) class of morphisms exists in locally presentable categories is equivalent to a large-cardinal axiom from set theory. One proves similarly, on one hand, that homotopy localization exists with respect to sets of maps in every cofibrantly generated, left proper, simplicial model category M whose underlying category is locally presentable. On the other hand, as we show in this article, the existence of localization with respect to possibly proper classes of maps in a model category M satisfying the above assumptions is implied by a large-cardinal axiom called Vopënka's principle, although we do not know if the reverse implication holds. We also show that, under the same assumptions on M, every endofunctor of M that is idempotent up to homotopy is equivalent to localization with respect to some class S of maps, and if Vopënka's principle holds then S can be chosen to be a set. There are examples showing that the latter need not be true if M is not cofibrantly generated. The above assumptions on M are satisfied by simplicial sets and symmetric spectra over simplicial sets, among many other model categories.
Resumo:
We consider the Kudla-Millson lift from elliptic modular forms of weight (p+q)/2 to closed q-forms on locally symmetric spaces corresponding to the orthogonal group O(p,q). We study the L²-norm of the lift following the Rallis inner product formula. We compute the contribution at the Archimedian place. For locally symmetric spaces associated to even unimodular lattices, we obtain an explicit formula for the L²-norm of the lift, which often implies that the lift is injective. For O(p,2) we discuss how such injectivity results imply the surjectivity of the Borcherds lift.
Resumo:
To a finite graph there corresponds a free partially commutative group: with the given graph as commutation graph. In this paper we construct an orthogonality theory for graphs and their corresponding free partially commutative groups. The theory developed here provides tools for the study of the structure of partially commutative groups, their universal theory and automorphism groups. In particular the theory is applied in this paper to the centraliser lattice of such groups.
Resumo:
We study simply-connected irreducible non-locally symmetric pseudo-Riemannian Spin(q) manifolds admitting parallel quaternionic spinors.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
En éste estudio analizamos el rendimiento de las técnicas citogenéticas utilizadas en los protocolos diagnósticos del MM (CC y técnicas de FISH). En primer lugar caracterizamos la serie de pacientes y los estratificamos en grupos de riesgo según los sistemas de estadificación actuales. Después estudiamos el porcentaje de cariotipos patológicos con cada una de las técnicas y en conjunto, encontrando un 40% de cariotipos patológicos por CC y de estos un 11,5% pertenecían a estudios con recuentos de CP ≤20% por citomorfología. La técnica de FISH aumentó hasta un 68% los cariotipos patológicos. También hemos realizado la caracterización de los pacientes con ganancias de 1q y su impacto en la evolución de la enfermedad.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.