15 resultados para Protein-kinase Activation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Control of cell cycle progression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. The Schizosaccharomyces pombe SAPK Sty1/Spc1 orchestrates general changes in gene expression in response to diverse forms of cytotoxic stress. Here we show that Sty1/Spc1 is bound to its target, the Srk1 kinase, when the signaling pathway is inactive. In response to stress, Sty1/Spc1 phosphorylates Srk1 at threonine 463 of the regulatory domain, inducing both activation of Srk1 kinase, which negatively regulates cell cycle progression by inhibiting Cdc25, and dissociation of Srk1 from the SAPK, which leads to Srk1 degradation by the proteasome.
Resumo:
Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters.
Resumo:
The recently discovered apolipoprotein AV (apoAV) gene has been reported to be a key player in modulating plasma triglyceride levels. Here we identify the hepatocyte nuclear factor-4 (HNF-4 ) as a novel regulator of human apoAV gene. Inhibition of HNF-4 expression by small interfering RNA resulted in down-regulation of apoAV. Deletion, mutagenesis, and binding assays revealed that HNF-4 directly regulates human apoAV promoter through DR1 [a direct repeat separated by one nucleotide (nt)], and via a novel element for HNF-4 consisting of an inverted repeat separated by 8 nt (IR8). In addition, we show that the coactivator peroxisome proliferator-activated receptor- coactivator-1 was capable of stimulating the HNF-4 -dependent transactivation of apoAV promoter. Furthermore, analyses in human hepatic cells demonstrated that AMP-activated protein kinase (AMPK) and the MAPK signaling pathway regulate human apoAV expression and suggested that this regulation may be mediated, at least in part, by changes in HNF-4 . Intriguingly, EMSAs and mice with a liver-specific disruption of the HNF-4 gene revealed a species-distinct regulation of apoAV by HNF-4 , which resembles that of a subset of HNF-4 target genes. Taken together, our data provide new insights into the binding properties and the modulation of HNF-4 and underscore the role of HNF-4 in regulating triglyceride metabolism.
Resumo:
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.
Resumo:
Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.
Resumo:
Myotonic dystrophy 1 (DM1) is caused by a CTG expansion in the 3′-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk−/−) mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk−/− mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk−/− mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.
Resumo:
Either calorie restriction, loss of function of the nutrient-dependent PKA or TOR/SCH9 pathways, or activation of stress defences improves longevity in different eukaryotes. However, the molecular links between glucose depletion, nutrient-dependent pathways and stress responses are unknown. Here we show that either calorie restriction or inactivation of nutrient-dependent pathways induces life-span extension in fission yeast, and that such effect is dependent on the activation of the stress-dependent Sty1 MAP kinase. During transition to stationary phase in glucose-limiting conditions, Sty1 becomes activated and triggers a transcriptional stress program, whereas such activation does not occur under glucose-rich conditions. Deletion of the genes coding for the SCH9-homologue Sck2 or the Pka1 kinases, or mutations leading to constitutive activation of the Sty1 stress pathway increase life span under glucose-rich conditions, and importantly such beneficial effects depend ultimately on Sty1. Furthermore, cells lacking Pka1 display enhanced oxygen consumption and Sty1 activation under glucose-rich conditions. We conclude that calorie restriction favours oxidative metabolism, reactive oxygen species production and Sty1 MAP kinase activation, and this stress pathway favours life-span extension.
Resumo:
Background: Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle tocause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective: This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods: We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP14 were assayed on the activated mast cells. Betahexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results: Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogenactivated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by betahexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase,and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions: Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition.
Resumo:
Repair of damaged tissue requires the coordinated action of inflammatory and tissue-specific cells to restore homeostasis, but the underlying regulatory mechanisms are poorly understood. In this paper, we report new roles for MKP-1 (mitogen-activated protein kinase [MAPK] phosphatase-1) in controlling macrophage phenotypic transitions necessary for appropriate muscle stem cell¿dependent tissue repair. By restricting p38 MAPK activation, MKP-1 allows the early pro- to antiinflammatory macrophage transition and the later progression into a macrophage exhaustion-like state characterized by cytokine silencing, thereby permitting resolution of inflammation as tissue fully recovers. p38 hyperactivation in macrophages lacking MKP-1 induced the expression of microRNA-21 (miR-21), which in turn reduced PTEN (phosphatase and tensin homologue) levels, thereby extending AKT activation. In the absence of MKP-1, p38-induced AKT activity anticipated the acquisition of the antiinflammatory gene program and final cytokine silencing in macrophages, resulting in impaired tissue healing. Such defects were reversed by temporally controlled p38 inhibition. Conversely, miR-21¿AKT interference altered homeostasis during tissue repair. This novel regulatory mechanism involving the appropriate balance of p38, MKP-1, miR-21, and AKT activities may have implications in chronic inflammatory degenerative diseases.
Resumo:
Mastoparan, a basic tetradecapeptide isolated from wasp venom, is a novel mitogen for Swiss 3T3 cells. This peptide induced DNA synthesis in synergy with insulin in a concentration-dependent manner; half-maximum and maximum responses were achieved at 14 and 17 microM, respectively. Mastoparan also stimulated DNA synthesis in the presence of other growth promoting factors including bombesin, insulin-like growth factor-1, and platelet-derived growth factor. The synergistic mitogenic stimulation by mastoparan can be dissociated from activation of phospholipase C. Mastoparan did not stimulate phosphoinositide breakdown, Ca2+ mobilization or protein kinase C-mediated phosphorylation of a major cellular substrate or transmodulation of the epidermal growth factor receptor. In contrast, mastoparan stimulated arachidonic acid release, prostaglandin E2 production, and enhanced cAMP accumulation in the presence of forskolin. These responses were inhibited by prior treatment with pertussis toxin. Hence, mastoparan stimulates arachidonic acid release via a pertussis toxin-sensitive G protein in Swiss 3T3 cells. Arachidonic acid, like mastoparan, stimulated DNA synthesis in the presence of insulin. The ability of mastoparan to stimulate mitogenesis was reduced by pertussis toxin treatment. These results demonstrate, for the first time, that mastoparan stimulates reinitiation of DNA synthesis in Swiss 3T3 cells and indicate that this peptide may be a useful probe to elucidate signal transduction mechanisms in mitogenesis.
Resumo:
It has been reported that phosphoinositide 3-kinase (PI 3-kinase) and its downstream target, protein kinase B (PKB), play a central role in the signaling of cell survival triggered by neurotrophins (NTs). In this report, we have analyzed the involvement of Ca2+ and calmodulin (CaM) in the activation of the PKB induced by NTs. We have found that reduction of intracellular Ca2+ concentration or functional blockade of CaM abolished NGF-induced activation of PKB in PC12 cells. Similar results were obtained in cultures of chicken spinal cord motoneurons treated with brain-derived neurotrophic factor (BDNF). Moreover, CaM inhibition prevented the cell survival triggered by NGF or BDNF. This effect was counteracted by the transient expression of constitutive active forms of the PKB, indicating that CaM regulates NT-induced cell survival through the activation of the PKB. We have investigated the mechanisms whereby CaM regulates the activation of the PKB, and we have found that CaM was necessary for the proper generation and/or accumulation of the products of the PI 3-kinase in intact cells.
Resumo:
Modulation of signalling pathways can trigger different cellular responses, including differences in cell fate. This modulation can be achieved by controlling the pathway activity with great precision to ensure robustness and reproducibility of the specification of cell fate. The development of the photoreceptor R7 in the Drosophila melanogasterretina has become a model in which to investigate the control of cell signalling. During R7 specification, a burst of Ras small GTPase (Ras) and mitogen-activated protein kinase (MAPK) controlled by Sevenless receptor tyrosine kinase (Sev) is required. Several cells in each ommatidium express sev. However, the spatiotemporal expression of the boss ligand and the action of negative regulators of the Sev pathway will restrict the R7 fate to a single cell. The Drosophila suppressor of cytokine signalling 36E (SOCS36E) protein contains an SH2 domain and acts as a Sev signalling attenuator. By contrast, downstream of receptor kinase (Drk), the fly homolog of the mammalian Grb2 adaptor protein, which also contains an SH2 domain, acts as a positive activator of the pathway. Here, we apply the Förster resonance energy transfer (FRET) assay to transfected Drosophila S2 cells and demonstrate that Sev binds directly to either the suppressor protein SOCS36E or the adaptor protein Drk. We propose a mechanistic model in which the competition between these two proteins for binding to the same docking site results in either attenuation of the Sev transduction in cells that should not develop R7 photoreceptors or amplification of the Ras-MAPK signal only in the R7 precursor.
Resumo:
Activating mutations in the K-Ras small GTPase are extensively found in human tumors. Although these mutations induce the generation of a constitutively GTP-loaded, active form of K-Ras, phosphorylation at Ser181 within the C-terminal hypervariable region can modulate oncogenic K-Ras function without affecting the in vitro affinity for its effector Raf-1. In striking contrast, K-Ras phosphorylated at Ser181 shows increased interaction in cells with the active form of Raf-1 and with p110α, the catalytic subunit of PI 3-kinase. Because the majority of phosphorylated K-Ras is located at the plasma membrane, different localization within this membrane according to the phosphorylation status was explored. Density-gradient fractionation of the plasma membrane in the absence of detergents showed segregation of K-Ras mutants that carry a phosphomimetic or unphosphorylatable serine residue (S181D or S181A, respectively). Moreover, statistical analysis of immunoelectron microscopy showed that both phosphorylation mutants form distinct nanoclusters that do not overlap. Finally, induction of oncogenic K-Ras phosphorylation - by activation of protein kinase C (PKC) - increased its co-clustering with the phosphomimetic K-Ras mutant, whereas (when PKC is inhibited) non-phosphorylated oncogenic K-Ras clusters with the non-phosphorylatable K-Ras mutant. Most interestingly, PI 3-kinase (p110α) was found in phosphorylated K-Ras nanoclusters but not in non-phosphorylated K-Ras nanoclusters. In conclusion, our data provide - for the first time - evidence that PKC-dependent phosphorylation of oncogenic K-Ras induced its segregation in spatially distinct nanoclusters at the plasma membrane that, in turn, favor activation of Raf-1 and PI 3-kinase.
Resumo:
Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)2 (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-β-induced collagen mRNA expression and interleukin (IL)-1β-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1β/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.
Resumo:
Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)2 (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-β-induced collagen mRNA expression and interleukin (IL)-1β-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1β/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.