12 resultados para Protein Array Analysis -- methods
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: GTF2I codes for a general intrinsic transcription factor and calcium channel regulator TFII-I, with high and ubiquitous expression, and a strong candidate for involvement in the morphological and neuro-developmental anomalies of the Williams-Beuren syndrome (WBS). WBS is a genetic disorder due to a recurring deletion of about 1,55-1,83 Mb containing 25-28 genes in chromosome band 7q11.23 including GTF2I. Completed homozygous loss of either the Gtf2i or Gtf2ird1 function in mice provided additional evidence for the involvement of both genes in the craniofacial and cognitive phenotype. Unfortunately nothing is now about the behavioral characterization of heterozygous mice. Methods: By gene targeting we have generated a mutant mice with a deletion of the first 140 amino-acids of TFII-I. mRNA and protein expression analysis were used to document the effect of the study deletion. We performed behavioral characterization of heterozygous mutant mice to document in vivo implications of TFII-I in the cognitive profile of WBS patients. Results: Homozygous and heterozygous mutant mice exhibit craniofacial alterations, most clearly represented in homozygous condition. Behavioral test demonstrate that heterozygous mutant mice exhibit some neurobehavioral alterations and hyperacusis or odynacusis that could be associated with specific features of WBS phenotype. Homozygous mutant mice present highly compromised embryonic viability and fertility. Regarding cellular model, we documented a retarded growth in heterozygous MEFs respect to homozygous or wild-type MEFs. Conclusion: Our data confirm that, although additive effects of haploinsufficiency at several genes may contribute to the full craniofacial or neurocognitive features of WBS, correct expression of GTF2I is one of the main players. In addition, these findings show that the deletion of the fist 140 amino-acids of TFII-I altered it correct function leading to a clear phenotype, at both levels, at the cellular model and at the in vivo model.
Resumo:
Critical real-time ebedded (CRTE) Systems require safe and tight worst-case execution time (WCET) estimations to provide required safety levels and keep costs low. However, CRTE Systems require increasing performance to satisfy performance needs of existing and new features. Such performance can be only achieved by means of more agressive hardware architectures, which are much harder to analyze from a WCET perspective. The main features considered include cache memòries and multi-core processors.Thus, althoug such features provide higher performance, corrent WCET analysis methods are unable to provide tight WCET estimations. In fact, WCET estimations become worse than for simple rand less powerful hardware. The main reason is the fact that hardware behavior is deterministic but unknown and, therefore, the worst-case behavior must be assumed most of the time, leading to large WCET estimations. The purpose of this project is developing new hardware designs together with WCET analysis tools able to provide tight and safe WCET estimations. In order to do so, those pieces of hardware whose behavior is not easily analyzable due to lack of accurate information during WCET analysis will be enhanced to produce a probabilistically analyzable behavior. Thus, even if the worst-case behavior cannot be removed, its probabilty can be bounded, and hence, a safe and tight WCET can be provided for a particular safety level in line with the safety levels of the remaining components of the system. During the first year the project we have developed molt of the evaluation infraestructure as well as the techniques hardware techniques to analyze cache memories. During the second year those techniques have been evaluated, and new purely-softwar techniques have been developed.
Resumo:
Selenoproteins are a diverse group of proteinsusually misidentified and misannotated in sequencedatabases. The presence of an in-frame UGA (stop)codon in the coding sequence of selenoproteingenes precludes their identification and correctannotation. The in-frame UGA codons are recodedto cotranslationally incorporate selenocysteine,a rare selenium-containing amino acid. The developmentof ad hoc experimental and, more recently,computational approaches have allowed the efficientidentification and characterization of theselenoproteomes of a growing number of species.Today, dozens of selenoprotein families have beendescribed and more are being discovered in recentlysequenced species, but the correct genomic annotationis not available for the majority of thesegenes. SelenoDB is a long-term project that aims toprovide, through the collaborative effort of experimentaland computational researchers, automaticand manually curated annotations of selenoproteingenes, proteins and SECIS elements. Version 1.0 ofthe database includes an initial set of eukaryoticgenomic annotations, with special emphasis on thehuman selenoproteome, for immediate inspectionby selenium researchers or incorporation into moregeneral databases. SelenoDB is freely available athttp://www.selenodb.org.
Resumo:
Background: Amino acid tandem repeats are found in nearly one-fifth of human proteins. Abnormal expansion of these regions is associated with several human disorders. To gain further insight into the mutational mechanisms that operate in this type of sequence, we have analyzed a large number of mutation variants derived from human expressed sequence tags (ESTs).Results: We identified 137 polymorphic variants in 115 different amino acid tandem repeats. Of these, 77 contained amino acid substitutions and 60 contained gaps (expansions or contractions of the repeat unit). The analysis showed that at least about 21% of the repeats might be polymorphic in humans. We compared the mutations found in different types of amino acid repeats and in adjacent regions. Overall, repeats showed a five-fold increase in the number of gap mutations compared to adjacent regions, reflecting the action of slippage within the repetitive structures. Gap and substitution mutations were very differently distributed between different amino acid repeat types. Among repeats containing gap variants we identified several disease and candidate disease genes.Conclusion: This is the first report at a genome-wide scale of the types of mutations occurring in the amino acid repeat component of the human proteome. We show that the mutational dynamics of different amino acid repeat types are very diverse. We provide a list of loci with highly variable repeat structures, some of which may be potentially involved in disease.
Resumo:
Purpose : To assess time trends of testicular cancer (TC) mortality in Spain for period 1985-2019 for age groups 15-74 years old through a Bayesian age-period-cohort (APC) analysis. Methods: A Bayesian age-drift model has been fitted to describe trends. Projections for 2005-2019 have been calculated by means of an autoregressive APC model. Prior precision for these parameters has been selected through evaluation of an adaptive precision parameter and 95% credible intervals (95% CRI) have been obtained for each model parameter. Results: A decrease of -2.41% (95% CRI: -3.65%; -1.13%) per year has been found for TC mortality rates in age groups 15-74 during 1985-2004, whereas mortality showed a lower annual decrease when data was restricted to age groups 15-54 (-1.18%; 95% CRI: -2.60%; -0.31%). During 2005-2019 is expected a decrease of TC mortality of 2.30% per year for men younger than 35, whereas a leveling off for TC mortality rates is expected for men older than 35. Conclusions: A Bayesian approach should be recommended to describe and project time trends for those diseases with low number of cases. Through this model it has been assessed that management of TC and advances in therapy led to decreasing trend of TC mortality during the period 1985-2004, whereas a leveling off for these trends can be considered during 2005-2019 among men older than 35.
Resumo:
Purpose : To assess time trends of testicular cancer (TC) mortality in Spain for period 1985-2019 for age groups 15-74 years old through a Bayesian age-period-cohort (APC) analysis. Methods: A Bayesian age-drift model has been fitted to describe trends. Projections for 2005-2019 have been calculated by means of an autoregressive APC model. Prior precision for these parameters has been selected through evaluation of an adaptive precision parameter and 95% credible intervals (95% CRI) have been obtained for each model parameter. Results: A decrease of -2.41% (95% CRI: -3.65%; -1.13%) per year has been found for TC mortality rates in age groups 15-74 during 1985-2004, whereas mortality showed a lower annual decrease when data was restricted to age groups 15-54 (-1.18%; 95% CRI: -2.60%; -0.31%). During 2005-2019 is expected a decrease of TC mortality of 2.30% per year for men younger than 35, whereas a leveling off for TC mortality rates is expected for men older than 35. Conclusions: A Bayesian approach should be recommended to describe and project time trends for those diseases with low number of cases. Through this model it has been assessed that management of TC and advances in therapy led to decreasing trend of TC mortality during the period 1985-2004, whereas a leveling off for these trends can be considered during 2005-2019 among men older than 35.
Resumo:
Purpose : To assess time trends of testicular cancer (TC) mortality in Spain for period 1985-2019 for age groups 15-74 years old through a Bayesian age-period-cohort (APC) analysis. Methods: A Bayesian age-drift model has been fitted to describe trends. Projections for 2005-2019 have been calculated by means of an autoregressive APC model. Prior precision for these parameters has been selected through evaluation of an adaptive precision parameter and 95% credible intervals (95% CRI) have been obtained for each model parameter. Results: A decrease of -2.41% (95% CRI: -3.65%; -1.13%) per year has been found for TC mortality rates in age groups 15-74 during 1985-2004, whereas mortality showed a lower annual decrease when data was restricted to age groups 15-54 (-1.18%; 95% CRI: -2.60%; -0.31%). During 2005-2019 is expected a decrease of TC mortality of 2.30% per year for men younger than 35, whereas a leveling off for TC mortality rates is expected for men older than 35. Conclusions: A Bayesian approach should be recommended to describe and project time trends for those diseases with low number of cases. Through this model it has been assessed that management of TC and advances in therapy led to decreasing trend of TC mortality during the period 1985-2004, whereas a leveling off for these trends can be considered during 2005-2019 among men older than 35.
Resumo:
Purpose : To assess time trends of testicular cancer (TC) mortality in Spain for period 1985-2019 for age groups 15-74 years old through a Bayesian age-period-cohort (APC) analysis. Methods: A Bayesian age-drift model has been fitted to describe trends. Projections for 2005-2019 have been calculated by means of an autoregressive APC model. Prior precision for these parameters has been selected through evaluation of an adaptive precision parameter and 95% credible intervals (95% CRI) have been obtained for each model parameter. Results: A decrease of -2.41% (95% CRI: -3.65%; -1.13%) per year has been found for TC mortality rates in age groups 15-74 during 1985-2004, whereas mortality showed a lower annual decrease when data was restricted to age groups 15-54 (-1.18%; 95% CRI: -2.60%; -0.31%). During 2005-2019 is expected a decrease of TC mortality of 2.30% per year for men younger than 35, whereas a leveling off for TC mortality rates is expected for men older than 35. Conclusions: A Bayesian approach should be recommended to describe and project time trends for those diseases with low number of cases. Through this model it has been assessed that management of TC and advances in therapy led to decreasing trend of TC mortality during the period 1985-2004, whereas a leveling off for these trends can be considered during 2005-2019 among men older than 35.
Resumo:
This project addresses methodological and technological challenges in the development of multi-modal data acquisition and analysis methods for the representation of instrumental playing technique in music performance through auditory-motor patterning models. The case study is violin playing: a multi-modal database of violin performances has been constructed by recording different musicians while playing short exercises on different violins. The exercise set and recording protocol have been designed to sample the space defined by dynamics (from piano to forte) and tone (from sul tasto to sul ponticello), for each bow stroke type being played on each of the four strings (three different pitches per string) at two different tempi. The data, containing audio, video, and motion capture streams, has been processed and segmented to facilitate upcoming analyses. From the acquired motion data, the positions of the instrument string ends and the bow hair ribbon ends are tracked and processed to obtain a number of bowing descriptors suited for a detailed description and analysis of the bow motion patterns taking place during performance. Likewise, a number of sound perceptual attributes are computed from the audio streams. Besides the methodology and the implementation of a number of data acquisition tools, this project introduces preliminary results from analyzing bowing technique on a multi-modal violin performance database that is unique in its class. A further contribution of this project is the data itself, which will be made available to the scientific community through the repovizz platform.
Resumo:
Methods for the extraction of features from physiological datasets are growing needs as clinical investigations of Alzheimer’s disease (AD) in large and heterogeneous population increase. General tools allowing diagnostic regardless of recording sites, such as different hospitals, are essential and if combined to inexpensive non-invasive methods could critically improve mass screening of subjects with AD. In this study, we applied three state of the art multiway array decomposition (MAD) methods to extract features from electroencephalograms (EEGs) of AD patients obtained from multiple sites. In comparison to MAD, spectral-spatial average filter (SSFs) of control and AD subjects were used as well as a common blind source separation method, algorithm for multiple unknown signal extraction (AMUSE). We trained a feed-forward multilayer perceptron (MLP) to validate and optimize AD classification from two independent databases. Using a third EEG dataset, we demonstrated that features extracted from MAD outperformed features obtained from SSFs AMUSE in terms of root mean squared error (RMSE) and reaching up to 100% of accuracy in test condition. We propose that MAD maybe a useful tool to extract features for AD diagnosis offering great generalization across multi-site databases and opening doors to the discovery of new characterization of the disease.
Resumo:
Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila-the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families-to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia's gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process.
Resumo:
Background: The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT) confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP) the most commonly used for promoter methylation study, while immunohistochemistry (IHC) has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. Methods A computer-aided search of MEDLINE (1950-October 2009), EBSCO (1966-October 2009) and EMBASE (1974-October 2009) was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Results Of 254 studies identified as eligible for full-text review, 52 (20.5%) met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others) was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Conclusions Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably.