5 resultados para Primary Visual-cortex
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Total lack of visual experience [dark rearing (DR)] is known to prolong the critical period and delay development of sensory functions in mammalian visual cortex. Recent results show that neurotrophins (NTs) counteract the effects of DR on functional properties of visual cortical cells and exert a strong control on critical period duration. NTs are known to modulate the development and synaptic efficacy of neurotransmitter systems that are affected by DR. However, it is still unknown whether the actions of NTs in dark-reared animals involve interaction with neurotransmitter systems. We have studied the effects of DR on the expression of key molecules in the glutamatergic and GABAergic systems in control and NT-treated animals. We have found that DR reduced the expression of the NMDA receptor 2A subunit and its associated protein PSD-95 (postsynaptic density-95), of GRIP (AMPA glutamate receptor interacting protein), and of the biosynthetic enzyme GAD (glutamic acid decarboxylase). Returning dark-reared animals to light for 2 hr restored normal expression of the above-mentioned proteins almost completely. NT treatment specifically counteracts DR effects; NGF acts primarily on the NMDA system, whereas BDNF acts primarily on the GABAergic system. Finally, the action of NT4 seems to involve both excitatory and inhibitory systems. These data demonstrate that different NTs counteract DR effects by modulating the expression of key molecules of the excitatory and inhibitory neurotransmitter systems
Resumo:
L’objectiu d’aquest estudi es investigar l’organització cortical junt amb la connectivitat còrtico-subcortical en subjectes sans, com a estudi preliminar. Els mapes corticals s’han fet per TMS navegada, i els punts motors obtinguts s’han exportant per estudi tractogràfic i anàlisi de las seves connexions. El coneixement precís de la localització de l’àrea cortical motora primària i les seves connexions es la base per ser utilitzada en estudis posteriors de la reorganització cortical i sub-cortical en pacients amb infart cerebral. Aquesta reorganització es deguda a la neuroplasticitat i pot ser influenciada per els efectes neuromoduladors de la estimulació cerebral no invasiva.
Resumo:
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen component of Ayahuasca, an Amazonian beverage traditionally used for ritual, religious and healing purposes that is being increasingly used for recreational purposes in US and Europe. 5MeO-DMT is of potential interest for schizophrenia research owing to its hallucinogenic properties. Two other psychotomimetic agents, phencyclidine and 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), markedly disrupt neuronal activity and reduce the power of low frequency cortical oscillations (<4 Hz, LFCO) in rodent medial prefrontal cortex (mPFC). Here we examined the effect of 5-MeO-DMT on cortical function and its potential reversal by antipsychotic drugs. Moreover, regional brain activity was assessed by blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). 5-MeO-DMT disrupted mPFC activity, increasing and decreasing the discharge of 51 and 35% of the recorded pyramidal neurons, and reducing (−31%) the power of LFCO. The latter effect depended on 5-HT1A and 5-HT2A receptor activation and was reversed by haloperidol, clozapine, risperidone, and the mGlu2/3 agonist LY379268. Likewise, 5-MeO-DMT decreased BOLD responses in visual cortex (V1) and mPFC. The disruption of cortical activity induced by 5-MeO-DMT resembles that produced by phencyclidine and DOI. This, together with the reversal by antipsychotic drugs, suggests that the observed cortical alterations are related to the psychotomimetic action of 5-MeO-DMT. Overall, the present model may help to understand the neurobiological basis of hallucinations and to identify new targets in antipsychotic drug development.
Resumo:
Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.
Resumo:
Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.