22 resultados para Power Reactor Development Co.
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Contribució al Seminari: "Les Euroregions: Experiències i aprenatges per a l’Euroregió Pirineus-Mediterrània", 15-16 de desembre de 2005
Resumo:
Aquest article resumeix el desenvolupament del programa INTERREG i la cooperació a la frontera franc-britànica en els últims vint anys. Això és seguit per una anàlisi de la forma transfronterera cooperació pot entendre recorrent a les discussions conceptuals de canviar la governança europea i les relacions de poder entre els diferents nivells de govern. Aquestes idees conceptuals proporcionen un context per a un examen en profunditat de la iniciativa INTERREG IIIA, a la frontera franc-britànica que es destaquen alguns dels principals problemes i les contradiccions de la cooperació transfronterera.
Resumo:
We present a study on the development and the evaluation of a fully automated radio-frequency glow discharge system devoted to the deposition of amorphous thin film semiconductors and insulators. The following aspects were carefully addressed in the design of the reactor: (1) cross contamination by dopants and unstable gases, (2) capability of a fully automated operation, (3) precise control of the discharge parameters, particularly the substrate temperature, and (4) high chemical purity. The new reactor, named ARCAM, is a multiplasma-monochamber system consisting of three separated plasma chambers located inside the same isothermal vacuum vessel. Thus, the system benefits from the advantages of multichamber systems but keeps the simplicity and low cost of monochamber systems. The evaluation of the reactor performances showed that the oven-like structure combined with a differential dynamic pumping provides a high chemical purity in the deposition chamber. Moreover, the studies of the effects associated with the plasma recycling of material from the walls and of the thermal decomposition of diborane showed that the multiplasma-monochamber design is efficient for the production of abrupt interfaces in hydrogenated amorphous silicon (a-Si:H) based devices. Also, special attention was paid to the optimization of plasma conditions for the deposition of low density of states a-Si:H. Hence, we also present the results concerning the effects of the geometry, the substrate temperature, the radio frequency power and the silane pressure on the properties of the a-Si:H films. In particular, we found that a low density of states a-Si:H can be deposited at a wide range of substrate temperatures (100°C
Resumo:
The 1st chapter of this work presents the different experiments and collaborations in which I am involved during my PhD studies of Physics. Following those descriptions, the 2nd chapter is dedicated to how the radiation affects the silicon sensors, as well as some experimental measurements carried out at CERN (Geneve, Schwitzerland) and IFIC (Valencia, Spain) laboratories. Besides the previous investigation results, this chapter includes the most recent scientific papers appeared in the latest RD50 (Research & Development #50) Status Report, published in January 2007, as well as some others published this year. The 3rd and 4th are dedicated to the simulation of the electrical behavior of solid state detectors. In chapter 3 are reported the results obtained for the illumination of edgeless detectors irradiated at different fluences, in the framework of the TOSTER Collaboration. The 4th chapter reports about simulation design, simulation and fabrication of a novel 3D detector developed at CNM for ions detection in the future ITER fusion reactor. This chapter will be extended with irradiation simulations and experimental measurements in my PhD Thesis.
Resumo:
The work in this paper deals with the development of momentum and thermal boundary layers when a power law fluid flows over a flat plate. At the plate we impose either constant temperature, constant flux or a Newton cooling condition. The problem is analysed using similarity solutions, integral momentum and energy equations and an approximation technique which is a form of the Heat Balance Integral Method. The fluid properties are assumed to be independent of temperature, hence the momentum equation uncouples from the thermal problem. We first derive the similarity equations for the velocity and present exact solutions for the case where the power law index n = 2. The similarity solutions are used to validate the new approximation method. This new technique is then applied to the thermal boundary layer, where a similarity solution can only be obtained for the case n = 1.
Resumo:
The electromagnetic radiation at a terahertz frequencies (from 0.1 THz to 10 THz) is situated in the frequency band comprised between the optical band and the radio band. The interest of the scientific community in this frequency band has grown up due to its large capabilities to develop innovative imaging systems. The terahertz waves are able to generate extremely short pulses that achieve good spatial resolution, good penetration capabilities and allow to identify microscopic structures using spectral analysis. The work carried out during the period of the grant has been based on the developement of system working at the aforementioned frequency band. The main system is based on a total power radiometer working at 0.1 THz to perform security imaging. Moreover, the development of this system has been useful to gain knowledge in the behavior of the component systems at this frequency band. Moreover, a vectorial network analyzer has been used to characterize materials and perform active raster imaging. A materials measurement system has been designed and used to measure material properties as permittivity, losses and water concentration. Finally, the design of a terahertz time-domain spectrometer (THz-TDS) system has been started. This system will allow to perform tomographic measurement with very high penetration resolutions while allowing the spectral characterization of the sample material. The application range of this kind of system is very wide: from the identification of cancerous tissues of a skin to the characterization of the thickness of a painted surface of a car.
Resumo:
Technological limitations and power constraints are resulting in high-performance parallel computing architectures that are based on large numbers of high-core-count processors. Commercially available processors are now at 8 and 16 cores and experimental platforms, such as the many-core Intel Single-chip Cloud Computer (SCC) platform, provide much higher core counts. These trends are presenting new sets of challenges to HPC applications including programming complexity and the need for extreme energy efficiency.In this work, we first investigate the power behavior of scientific PGAS application kernels on the SCC platform, and explore opportunities and challenges for power management within the PGAS framework. Results obtained via empirical evaluation of Unified Parallel C (UPC) applications on the SCC platform under different constraints, show that, for specific operations, the potential for energy savings in PGAS is large; and power/performance trade-offs can be effectively managed using a cross-layerapproach. We investigate cross-layer power management using PGAS language extensions and runtime mechanisms that manipulate power/performance tradeoffs. Specifically, we present the design, implementation and evaluation of such a middleware for application-aware cross-layer power management of UPC applications on the SCC platform. Finally, based on our observations, we provide a set of recommendations and insights that can be used to support similar power management for PGAS applications on other many-core platforms.
Resumo:
Lector de comics para plataforma iOS para dispositivos iPad.
Resumo:
The article presents and discusses estimates of social and economic indicators for Italy’s regions in benchmark years roughly from Unification to the present day: life expectancy, education, GDP per capita at purchasing power parity, and the new Human Development Index (HDI). A broad interpretative hypothesis, based on the distinction between passive and active modernization, is proposed to account for the evolution of regional imbalances over the long-run. In the lack of active modernization, Southern Italy converged thanks to passive modernization, i.e., State intervention: however, this was more effective in life expectancy, less successful in education, expensive and as a whole ineffective in GDP. As a consequence, convergence in the HDI occurred from the late XIX century to the 1970s, but came to a sudden halt in the last decades of the XX century.
Resumo:
This paper studies the apparent contradiction between two strands of the literature on the effects of financial intermediation on economic activity. On the one hand, the empirical growth literature finds a positive effect of financial depth as measured by, for instance, private domestic credit and liquid liabilities (e.g., Levine, Loayza, and Beck 2000). On the other hand, the banking and currency crisis literature finds that monetary aggregates, such as domestic credit, are among the best predictors of crises and their related economic downturns (e.g., Kaminski and Reinhart 1999). The paper accounts for these contrasting effects based on the distinction between the short- and long-run impacts of financial intermediation. Working with a panel of cross-country and time-series observations, the paper estimates an encompassing model of short- and long-run effects using the Pooled Mean Group estimator developed by Pesaran, Shin, and Smith (1999). The conclusion from this analysis is that a positive long-run relationship between financial intermediation and output growth co-exists with a, mostly, negative short-run relationship. The paper further develops an explanation for these contrasting effects by relating them to recent theoretical models, by linking the estimated short-run effects to measures of financial fragility (namely, banking crises and financial volatility), and by jointly analyzing the effects of financial depth and fragility in classic panel growth regressions.
Resumo:
This paper studies the apparent contradiction between two strands of the literature on the effects of financial intermediation on economic activity. On the one hand, the empirical growth literature finds a positive effect of financial depth as measured by, for instance, private domestic credit and liquid liabilities (e.g., Levine, Loayza, and Beck 2000). On the other hand, the banking and currency crisis literature finds that monetary aggregates, such as domestic credit, are among the best predictors of crises and their related economic downturns (e.g., Kaminski and Reinhart 1999). The paper accounts for these contrasting effects based on the distinction between the short- and long-run impacts of financial intermediation. Working with a panel of cross-country and time-series observations, the paper estimates an encompassing model of short- and long-run effects using the Pooled Mean Group estimator developed by Pesaran, Shin, and Smith (1999). The conclusion from this analysis is that a positive long-run relationship between financial intermediation and output growth co-exists with a, mostly, negative short-run relationship. The paper further develops an explanation for these contrasting effects by relating them to recent theoretical models, by linking the estimated short-run effects to measures of financial fragility(namely, banking crises and financial volatility), and by jointly analyzing the effects of financial depth and fragility in classic panel growth regressions.
Resumo:
The influence of the basis set size and the correlation energy in the static electrical properties of the CO molecule is assessed. In particular, we have studied both the nuclear relaxation and the vibrational contributions to the static molecular electrical properties, the vibrational Stark effect (VSE) and the vibrational intensity effect (VIE). From a mathematical point of view, when a static and uniform electric field is applied to a molecule, the energy of this system can be expressed in terms of a double power series with respect to the bond length and to the field strength. From the power series expansion of the potential energy, field-dependent expressions for the equilibrium geometry, for the potential energy and for the force constant are obtained. The nuclear relaxation and vibrational contributions to the molecular electrical properties are analyzed in terms of the derivatives of the electronic molecular properties. In general, the results presented show that accurate inclusion of the correlation energy and large basis sets are needed to calculate the molecular electrical properties and their derivatives with respect to either nuclear displacements or/and field strength. With respect to experimental data, the calculated power series coefficients are overestimated by the SCF, CISD, and QCISD methods. On the contrary, perturbation methods (MP2 and MP4) tend to underestimate them. In average and using the 6-311 + G(3df) basis set and for the CO molecule, the nuclear relaxation and the vibrational contributions to the molecular electrical properties amount to 11.7%, 3.3%, and 69.7% of the purely electronic μ, α, and β values, respectively
Resumo:
Nowadays it is necessary to research other types of energy alternatives and find the way to supply and save the energy we waste. The aim of the project consist of programming a microprocessor to measure if an oven radiates heat to the exterior, for the measure It is used a Peltier element that generates a voltage depending of the temperature difference between the oven and the air of the place where the oven is situated; The energy generated by the oven will be recollected in a condensor. A sensor will be used to know the exact measure. The second part of the project the main propose, is the development of a harvester. The microprocessor will use the voltage produced by the Peltier element to supply the electricity that it needs to work. A low power circuit and the appropriate software are needed to save the voltage generated.
Resumo:
Whereas numerical modeling using finite-element methods (FEM) can provide transient temperature distribution in the component with enough accuracy, it is of the most importance the development of compact dynamic thermal models that can be used for electrothermal simulation. While in most cases single power sources are considered, here we focus on the simultaneous presence of multiple sources. The thermal model will be in the form of a thermal impedance matrix containing the thermal impedance transfer functions between two arbitrary ports. Eachindividual transfer function element ( ) is obtained from the analysis of the thermal temperature transient at node ¿ ¿ after a power step at node ¿ .¿ Different options for multiexponential transient analysis are detailed and compared. Among the options explored, small thermal models can be obtained by constrained nonlinear least squares (NLSQ) methods if the order is selected properly using validation signals. The methods are applied to the extraction of dynamic compact thermal models for a new ultrathin chip stack technology (UTCS).