5 resultados para Population Cells
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We consider a nonlinear cyclin content structured model of a cell population divided into proliferative and quiescent cells. We show, for particular values of the parameters, existence of solutions that do not depend on the cyclin content. We make numerical simulations for the general case obtaining, for some values of the parameters convergence to the steady state but also oscillations of the population for others.
Resumo:
Objective: The purpose of this study was to investigate the incidence of squamous cell carcinoma (SCC) of the anterior two thirds of the tongue in a population living in central and southern Portugal, all treated at Instituto Português de Oncologia de Lisboa, Francisco Gentil (IPOLFG). Study Design: This study was a retrospective review of all patients who had a histopathological diagnosis of SCC of the anterior two thirds of the tongue and had been treated in the Head and Neck Surgery Unit at the IPOLFG (Lisbon, Portugal), between 1st January 2001 and 31st December 2009. The risk factors evaluated were: gender; age; alcohol consumption; tobacco use; prosthesis use and the carcinoma site. Results: Of the 424 cases analysed, 71% were men. Mean age of occurrence was in 5th decade for males and the 6th decade for females, and the border of the tongue was the most common location. Alcohol consumption and tobacco had a lower impact in women, being the most common aetiological factors in the male population. No significant association was observed between patients and the use of a prosthesis. Conclusions: In spite of the consumption of aohol and tobacco starting to decline in certain parts of the world, our findings showed both factors still have a significant impact in male population. Further research should be done to determine aetiological factors in females.
Resumo:
Santiago Ramón y Cajal developed a great body of scientific research during the last decade of 19th century, mainly between 1888 and 1892, when he published more than 30 manuscripts. The neuronal theory, the structure of dendrites and spines, and fine microscopic descriptions of numerous neural circuits are among these studies. In addition, numerous cell types (neuronal and glial) were described by Ramón y Cajal during this time using this 'reazione nera' or Golgi method. Among these neurons were the special cells of the molecular layer of the neocortex. These cells were also termed Cajal cells or Retzius cells by other colleagues. Today these cells are known as Cajal-Retzius cells. From the earliest description, several biological aspects of these fascinating cells have been analyzed (e.g., cell morphology, physiological properties, origin and cellular fate, putative function during cortical development, etc). In this review we will summarize in a temporal basis the emerging knowledge concerning this cell population with specific attention the pioneer studies of Santiago Ramón y Cajal.
Resumo:
Newly generated olfactory receptor axons grow from the peripheral to the central nervous system aided by olfactory ensheathing cells (OECs). Thus, OEC transplantation has emerged as a promising therapy for spinal cord injuries and for other neural diseases. However, these cells do not present a uniform population, but, instead, a functionally heterogeneous population that exhibits a variety of responses including adhesion, repulsion and crossover during cell-cell and cell-matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. Here, we demonstrated that rodent OECs express all the components of the Nogo Receptor complex and that their migration is blocked by Myelin. Next, we used cell tracking and traction force microscopy to analyze OEC migration and its mechanical properties over Myelin. Our data relate the absence of traction force of OEC with lower migratory capacity, which correlates with changes in the F-Actin cytoskeleton and focal adhesion distribution. Lastly, OEC traction force and migratory capacity is enhanced after cell incubation with the Nogo Receptor inhibitor NEP1-40.
Resumo:
Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.