36 resultados para Poisson regression analysis

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When actuaries face with the problem of pricing an insurance contract that contains different types of coverage, such as a motor insurance or homeowner's insurance policy, they usually assume that types of claim are independent. However, this assumption may not be realistic: several studies have shown that there is a positive correlation between types of claim. Here we introduce different regression models in order to relax the independence assumption, including zero-inflated models to account for excess of zeros and overdispersion. These models have been largely ignored to multivariate Poisson date, mainly because of their computational di±culties. Bayesian inference based on MCMC helps to solve this problem (and also lets us derive, for several quantities of interest, posterior summaries to account for uncertainty). Finally, these models are applied to an automobile insurance claims database with three different types of claims. We analyse the consequences for pure and loaded premiums when the independence assumption is relaxed by using different multivariate Poisson regression models and their zero-inflated versions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent paper Bermúdez [2009] used bivariate Poisson regression models for ratemaking in car insurance, and included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. In the present paper, we revisit this model in order to consider alternatives. We propose a 2-finite mixture of bivariate Poisson regression models to demonstrate that the overdispersion in the data requires more structure if it is to be taken into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the same time, we show that a finite mixture of bivariate Poisson regression models embraces zero-inflated bivariate Poisson regression models as a special case. Additionally, we describe a model in which the mixing proportions are dependent on covariates when modelling the way in which each individual belongs to a separate cluster. Finally, an EM algorithm is provided in order to ensure the models’ ease-of-fit. These models are applied to the same automobile insurance claims data set as used in Bermúdez [2009] and it is shown that the modelling of the data set can be improved considerably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the effects of two main sources of innovation -intramural and external R&D- on the productivity level in a sample of 3,267 Catalonian firms. The data set used is based on the official innovation survey of Catalonia which was a part of the Spanish sample of CIS4, covering the years 2002-2004. We compare empirical results by applying usual OLS and quantile regression techniques both in manufacturing and services industries. In quantile regression, results suggest different patterns at both innovation sources as we move across conditional quantiles. The elasticity of intramural R&D activities on productivity decreased when we move up the high productivity levels both in manufacturing and services sectors, while the effects of external R&D rise in high-technology industries but are more ambiguous in low-technology and knowledge-intensive services. JEL codes: O300, C100, O140. Keywords: Innovation sources, R&D, Productivity, Quantile regression

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In automobile insurance, it is useful to achieve a priori ratemaking by resorting to gene- ralized linear models, and here the Poisson regression model constitutes the most widely accepted basis. However, insurance companies distinguish between claims with or without bodily injuries, or claims with full or partial liability of the insured driver. This paper exa- mines an a priori ratemaking procedure when including two di®erent types of claim. When assuming independence between claim types, the premium can be obtained by summing the premiums for each type of guarantee and is dependent on the rating factors chosen. If the independence assumption is relaxed, then it is unclear as to how the tari® system might be a®ected. In order to answer this question, bivariate Poisson regression models, suitable for paired count data exhibiting correlation, are introduced. It is shown that the usual independence assumption is unrealistic here. These models are applied to an automobile insurance claims database containing 80,994 contracts belonging to a Spanish insurance company. Finally, the consequences for pure and loaded premiums when the independence assumption is relaxed by using a bivariate Poisson regression model are analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the effects of two main sources of innovation —intramural and external R&D— on the productivity level in a sample of 3,267 Catalan firms. The data set used is based on the official innovation survey of Catalonia which was a part of the Spanish sample of CIS4, covering the years 2002-2004. We compare empirical results by applying usual OLS and quantile regression techniques both in manufacturing and services industries. In quantile regression, results suggest different patterns at both innovation sources as we move across conditional quantiles. The elasticity of intramural R&D activities on productivity decreased when we move up the high productivity levels both in manufacturing and services sectors, while the effects of external R&D rise in high-technology industries but are more ambiguous in low-technology and services industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Privatization of local public services has been implemented worldwide in the last decades. Why local governments privatize has been the subject of much discussion, and many empirical works have been devoted to analyzing the factors that explain local privatization. Such works have found a great diversity of motivations, and the variation among reported empirical results is large. To investigate this diversity we undertake a meta-regression analysis of the factors explaining the decision to privatize local services. Overall, our results indicate that significant relationships are very dependent upon the characteristics of the studies. Indeed, fiscal stress and political considerations have been found to contribute to local privatization specially in the studies of US cases published in the eighties that consider a broad range of services. Studies that focus on one service capture more accurately the influence of scale economies on privatization. Finally, governments of small towns are more affected by fiscal stress, political considerations and economic efficiency, while ideology seems to play a major role for large cities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the effects of two main sources of innovation - intramural and external R&D— on the productivity level in a sample of 3,267 Catalonian firms. The data set used is based on the official innovation survey of Catalonia which was a part of the Spanish sample of CIS4, covering the years 2002-2004. We compare empirical results by applying usual OLS and quantile regression techniques both in manufacturing and services industries. In quantile regression, results suggest different patterns at both innovation sources as we move across conditional quantiles. The elasticity of intramural R&D activities on productivity decreased when we move up the high productivity levels both in manufacturing and services sectors, while the effects of external R&D rise in high-technology industries but are more ambiguous in low-technology and knowledge-intensive services. JEL codes: O300, C100, O140 Keywords: Innovation sources, R&D, Productivity, Quantile Regression

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform a meta - analysis of 21 studies that estimate the elasticity of the price of waste collection demand upon waste quantities, a prior literature review having revealed that the price elasticity differs markedly. Based on a meta - regression with a total of 65 observations, we find no indication that municipal data give higher estimates for price elasticities than those associated with household data. Furthermore, there is no evidence that treating prices as exogenous underestimates the price elasticity. We find that much of the variation can be explained by sample size, the use of a weight - based as opposed to a volume - based pricing system, and the pricing of compostable waste. We also show that price elasticities determined in the USA and point estimations of elasticities are more elastic, but these effects are not robust to the changing of model specifications. Finally, our tests show that there is no evidence of publication bias while there is some evidence of the existence of genuine empirical effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sickness absence (SA) is an important social, economic and public health issue. Identifying and understanding the determinants, whether biological, regulatory or, health services-related, of variability in SA duration is essential for better management of SA. The conditional frailty model (CFM) is useful when repeated SA events occur within the same individual, as it allows simultaneous analysis of event dependence and heterogeneity due to unknown, unmeasured, or unmeasurable factors. However, its use may encounter computational limitations when applied to very large data sets, as may frequently occur in the analysis of SA duration. To overcome the computational issue, we propose a Poisson-based conditional frailty model (CFPM) for repeated SA events that accounts for both event dependence and heterogeneity. To demonstrate the usefulness of the model proposed in the SA duration context, we used data from all non-work-related SA episodes that occurred in Catalonia (Spain) in 2007, initiated by either a diagnosis of neoplasm or mental and behavioral disorders. As expected, the CFPM results were very similar to those of the CFM for both diagnosis groups. The CPU time for the CFPM was substantially shorter than the CFM. The CFPM is an suitable alternative to the CFM in survival analysis with recurrent events,especially with large databases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper tries to resolve some of the main shortcomings in the empirical literature of location decisions for new plants, i.e. spatial effects and overdispersion. Spatial effects are omnipresent, being a source of overdispersion in the data as well as a factor shaping the functional relationship between the variables that explain a firm’s location decisions. Using Count Data models, empirical researchers have dealt with overdispersion and excess zeros by developments of the Poisson regression model. This study aims to take this a step further, by adopting Bayesian methods and models in order to tackle the excess of zeros, spatial and non-spatial overdispersion and spatial dependence simultaneously. Data for Catalonia is used and location determinants are analysed to that end. The results show that spatial effects are determinant. Additionally, overdispersion is descomposed into an unstructured iid effect and a spatially structured effect. Keywords: Bayesian Analysis, Spatial Models, Firm Location. JEL Classification: C11, C21, R30.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article focuses on business risk management in the insurance industry. A methodology for estimating the profit loss caused by each customer in the portfolio due to policy cancellation is proposed. Using data from a European insurance company, customer behaviour over time is analyzed in order to estimate the probability of policy cancelation and the resulting potential profit loss due to cancellation. Customers may have up to two different lines of business contracts: motor insurance and other diverse insurance (such as, home contents, life or accident insurance). Implications for understanding customer cancellation behaviour as the core of business risk management are outlined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Logistic regression is included into the analysis techniques which are valid for observationalmethodology. However, its presence at the heart of thismethodology, and more specifically in physical activity and sports studies, is scarce. With a view to highlighting the possibilities this technique offers within the scope of observational methodology applied to physical activity and sports, an application of the logistic regression model is presented. The model is applied in the context of an observational design which aims to determine, from the analysis of use of the playing area, which football discipline (7 a side football, 9 a side football or 11 a side football) is best adapted to the child"s possibilities. A multiple logistic regression model can provide an effective prognosis regarding the probability of a move being successful (reaching the opposing goal area) depending on the sector in which the move commenced and the football discipline which is being played.