28 resultados para Person detection and tracking
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In dam inspection tasks, an underwater robot has to grab images while surveying the wall meanwhile maintaining a certain distance and relative orientation. This paper proposes the use of an MSIS (mechanically scanned imaging sonar) for relative positioning of a robot with respect to the wall. An imaging sonar gathers polar image scans from which depth images (range & bearing) are generated. Depth scans are first processed to extract a line corresponding to the wall (with the Hough transform), which is then tracked by means of an EKF (Extended Kalman Filter) using a static motion model and an implicit measurement equation associating the sensed points to the candidate line. The line estimate is referenced to the robot fixed frame and represented in polar coordinates (rho&thetas) which directly corresponds to the actual distance and relative orientation of the robot with respect to the wall. The proposed system has been tested in simulation as well as in water tank conditions
Resumo:
This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second.
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
The project aims at advancing the state of the art in the use of context information for classification of image and video data. The use of context in the classification of images has been showed of great importance to improve the performance of actual object recognition systems. In our project we proposed the concept of Multi-scale Feature Labels as a general and compact method to exploit the local and global context. The feature extraction from the discriminative probability or classification confidence label field is of great novelty. Moreover the use of a multi-scale representation of the feature labels lead to a compact and efficient description of the context. The goal of the project has been also to provide a general-purpose method and prove its suitability in different image/video analysis problem. The two-year project generated 5 journal publications (plus 2 under submission), 10 conference publications (plus 2 under submission) and one patent (plus 1 pending). Of these publications, a relevant number make use of the main result of this project to improve the results in detection and/or segmentation of objects.
Resumo:
Seismic methods used in the study of snow avalanches may be employed to detect and characterize landslides and other mass movements, using standard spectrogram/sonogram analysis. For snow avalanches, the spectrogram for a station that is approached by a sliding mass exhibits a triangular time/frequency signature due to an increase over time in the higher-frequency constituents. Recognition of this characteristic footprint in a spectrogram suggests a useful metric for identifying other mass-movement events such as landslides. The 1 June 2005 slide at Laguna Beach, California is examined using data obtained from the Caltech/USGS Regional Seismic Network. This event exhibits the same general spectrogram features observed in studies of Alpine snow avalanches. We propose that these features are due to the systematic relative increase in high-frequency energy transmitted to a seismometer in the path of a mass slide owing to a reduction of distance from the source signal. This phenomenon is related to the path of the waves whose high frequencies are less attenuated as they traverse shorter source-receiver paths. Entrainment of material in the course of the slide may also contribute to the triangular time/frequency signature as a consequence of the increase in the energy involved in the process; in this case the contribution would be a source effect. By applying this commonly observed characteristic to routine monitoring algorithms, along with custom adjustments for local site effects, we seek to contribute to the improvement in automatic detection and monitoring methods of landslides and other mass movements.
Resumo:
A recently developed technique, polarimetric radar interferometry, is applied to tackle the problem of the detection of buried objects embedded in surface clutter. An experiment with a fully polarimetric radar in an anechoic chamber has been carried out using different frequency bands and baselines. The processed results show the ability of this technique to detect buried plastic mines and to measure their depth. This technique enables the detection of plastic mines even if their backscatter response is much lower than that of the surface clutter.
Resumo:
The study shows that social anxiety and persecutory ideation share many of the same predictive factors. Non-clinical paranoia may be a type of anxious fear. However, perceptual anomalies are a distinct predictor of paranoia. In the context of an individual feeling anxious, the occurrence of odd internal feelings in social situations may lead to delusional ideas through a sense of" things not seeming right". The study illustrates the approach of focusing on experiences such as paranoid thinking rather than diagnoses such as schizophrenia.
Resumo:
Background: Reductions in breast cancer (BC) mortality in Western countries have been attributed to the use of screening mammography and adjuvant treatments. The goal of this work was to analyze the contributions of both interventions to the decrease in BC mortality between 1975 and 2008 in Catalonia. Methodology/Principal Findings: A stochastic model was used to quantify the contribution of each intervention. Age standardized BC mortality rates for calendar years 1975-2008 were estimated in four hypothetical scenarios: 1) Only screening, 2) Only adjuvant treatment, 3) Both interventions, and 4) No intervention. For the 30-69 age group, observed Catalan BC mortality rates per 100,000 women-year rose from 29.4 in 1975 to 38.3 in 1993, and afterwards continuously decreased to 23.2 in 2008. If neither of the two interventions had been used, in 2008 the estimated BC mortality would have been 43.5, which, compared to the observed BC mortality rate, indicates a 46.7% reduction. In 2008 the reduction attributable to screening was 20.4%, to adjuvant treatments was 15.8% and to both interventions 34.1%. Conclusions/Significance: Screening and adjuvant treatments similarly contributed to reducing BC mortality in Catalonia. Mathematical models have been useful to assess the impact of interventions addressed to reduce BC mortality that occurred over nearly the same periods.
Resumo:
Using event-related brain potentials, the time course of error detection and correction was studied in healthy human subjects. A feedforward model of error correction was used to predict the timing properties of the error and corrective movements. Analysis of the multichannel recordings focused on (1) the error-related negativity (ERN) seen immediately after errors in response- and stimulus-locked averages and (2) on the lateralized readiness potential (LRP) reflecting motor preparation. Comparison of the onset and time course of the ERN and LRP components showed that the signs of corrective activity preceded the ERN. Thus, error correction was implemented before or at least in parallel with the appearance of the ERN component. Also, the amplitude of the ERN component was increased for errors, followed by fast corrective movements. The results are compatible with recent views considering the ERN component as the output of an evaluative system engaged in monitoring motor conflict.
Resumo:
This paper presents a vision-based localization approach for an underwater robot in a structured environment. The system is based on a coded pattern placed on the bottom of a water tank and an onboard down looking camera. Main features are, absolute and map-based localization, landmark detection and tracking, and real-time computation (12.5 Hz). The proposed system provides three-dimensional position and orientation of the vehicle along with its velocity. Accuracy of the drift-free estimates is very high, allowing them to be used as feedback measures of a velocity-based low-level controller. The paper details the localization algorithm, by showing some graphical results, and the accuracy of the system
Resumo:
Este trabajo presenta una metodología para detectar y realizar el seguimiento de características faciales. En el primer paso del procedimiento se detectan caras mediante Adaboost con cascadas de clasificadores débiles. El segundo paso busca las características internas de la cara mediante el CSR, detectando zonas de interés. Una vez que estas características se capturan, un proceso de tracking basado en el descriptor SIFT, que hemos llamado pseudo-SIFT, es capaz de guardar información sobre la evolución de movimiento en las regiones detectadas. Además, un conjunto de datos públicos ha sido desarrollado con el propósito de compartirlo con otras investigaciones sobre detección, clasificación y tracking. Experimentos reales muestran la robustez de este trabajo y su adaptabilidad para trabajos futuros.
Resumo:
En aquest treball realitzem un estudi sobre la detecció y la descripció de punts característics, una tecnologia que permet extreure informació continguda en les imatges. Primerament presentem l'estat de l'art juntament amb una avaluació dels mètodes més rellevants. A continuació proposem els nous mètodes que hem creat de detecció i descripció, juntament amb l'algorisme òptim anomenat DART, el qual supera l'estat de l'art. Finalment mostrem algunes aplicacions on s'utilitzen els punts DART. Basant-se en l'aproximació de l'espai d'escales Gaussià, el detector proposat pot extreure punts de distint tamany invariants davant canvis en el punt de vista, la rotació i la iluminació. La reutilització de l'espai d'escales durant el procés de descripció, així com l'ús d'estructures simplificades i optimitzades, permeten realitzar tot el procediment en un temps computacional menor a l'obtingut fins al moment. Així s'aconsegueixen punts invariants i distingibles de forma ràpida, el qual permet la seva utilització en aplicacions com el seguiment d'objectes, la reconstrucció d'escenaris 3D i en motors de cerca visual.
Resumo:
During the last decade the interest on space-borne Synthetic Aperture Radars (SAR) for remote sensing applications has grown as testified by the number of recent and forthcoming missions as TerraSAR-X, RADARSAT-2, COSMO-kyMed, TanDEM-X and the Spanish SEOSAR/PAZ. In this sense, this thesis proposes to study and analyze the performance of the state-of-the-Art space-borne SAR systems, with modes able to provide Moving Target Indication capabilities (MTI), i.e. moving object detection and estimation. The research will focus on the MTI processing techniques as well as the architecture and/ or configuration of the SAR instrument, setting the limitations of the current systems with MTI capabilities, and proposing efficient solutions for the future missions. Two European projects, to which the Universitat Politècnica de Catalunya provides support, are an excellent framework for the research activities suggested in this thesis. NEWA project proposes a potential European space-borne radar system with MTI capabilities in order to fulfill the upcoming European security policies. This thesis will critically review the state-of-the-Art MTI processing techniques as well as the readiness and maturity level of the developed capabilities. For each one of the techniques a performance analysis will be carried out based on the available technologies, deriving a roadmap and identifying the different technological gaps. In line with this study a simulator tool will be developed in order to validate and evaluate different MTI techniques in the basis of a flexible space-borne radar configuration. The calibration of a SAR system is mandatory for the accurate formation of the SAR images and turns to be critical in the advanced operation modes as MTI. In this sense, the SEOSAR/PAZ project proposes the study and estimation of the radiometric budget. This thesis will also focus on an exhaustive analysis of the radiometric budget considering the current calibration concepts and their possible limitations. In the framework of this project a key point will be the study of the Dual Receive Antenna (DRA) mode, which provides MTI capabilities to the mission. An additional aspect under study is the applicability of the Digital Beamforming on multichannel and/or multistatic radar platforms, which conform potential solutions for the NEWA project with the aim to fully exploit its capability jointly with MTI techniques.
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system