29 resultados para PREDICTIVE MODELS
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.
Resumo:
Mushroom picking has become a widespread autumn recreational activity in the Central Pyrenees and other regions of Spain. Predictive models that relate mushroom production or fungal species richness with forest stand and site characteristics are not available. This study used mushroom production data from 24 Scots pine plots over 3 years to develop a predictive model that could facilitate forest management decisions when comparing silvicultural options in terms of mushroom production. Mixed modelling was used to model the dependence of mushroom production on stand and site factors. The results showed that productions were greatest when stand basal area was approximately 20 m2 ha-1. Increasing elevation and northern aspect increased total mushroom production as well as the production of edible and marketed mushrooms. Increasing slope decreased productions. Marketed Lactarius spp., the most important group collected in the region, showed similar relationships. The annual variation in mushroom production correlated with autumn rainfall. Mushroom species richness was highest when the total production was highest.
Resumo:
Estudi realitzat a partir d’una estada a l’ Institut für Komplexe Materialien, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, entre 2010 i 2011. S'ha explorat l'efecte de les condicions i influència dels elements d'aleació en la capacitat de formació de vidre, l'estructura i les propietats tèrmiques i magnètiques de vidres metàl•lics massissos i materials nanocristal•lins en base Fe. La producció d'aquests materials en forma de cintes de unes 20 micres de gruix ha estat àmpliament estudiada i s'ha vist que presenten unes propietats excel•lents com a materials magnètics tous. El propòsit general d'aquest projecte era l'obtenció de composicions òptimes amb alta capacitat de formar vidre i amb excel•lents propietats magnètiques com a materials magnètics tous combinat amb bones propietats mecàniques. El projecte prenia com a punt de partida l'aliatge [FeCoBSi]96Nb4 ja que és el que presenta millor capacitat de formar vidre i presenta una alta imantació de saturació i baix camp coercitiu. S'ha fet un estudi dels factors fonamentals que intervenen en la formació de l'estat vitri. La composició abans esmentada ha estat variada amb l'addició d'altres elements per estudiar com afecten aquests nous elements a les propietats, la formació de vidre i l'estructura dels aliatges resultants amb l'objectiu de millorar-ne les propietats magnètiques i la capacitat de formació de vidre. Entre altres s'ha usat el Zr, Mo, Y i el Gd per millorar la formació de vidre; i el Co i el Ni per millorar les propietats magnètiques a alta temperatura. S'han estudiat les relacions entre la capacitat de formació de vidre i la seva estabilitat tèrmica, la resistència a la cristal•lització i la estructura de l'aliatge resultant després del procés de solidificació. Per aquest estudi s'han determinat els mecanismes que controlen la transformació i la seva cinètica així com les fases que es formen durant el tractament tèrmic permetent la formulació de models predictius.
Resumo:
The growth of pharmaceutical expenditure and its prediction is a major concern for policy makers and health care managers. This paper explores different predictive models to estimate future drug expenses, using demographic and morbidity individual information from an integrated healthcare delivery organization in Catalonia for years 2002 and 2003. The morbidity information consists of codified health encounters grouped through the Clinical Risk Groups (CRGs). We estimate pharmaceutical costs using several model specifications, and CRGs as risk adjusters, providing an alternative way of obtaining high predictive power comparable to other estimations of drug expenditures in the literature. These results have clear implications for the use of risk adjustment and CRGs in setting the premiums for pharmaceutical benefits.
Resumo:
This paper presents a test of the predictive validity of various classes ofQALY models (i.e., linear, power and exponential models). We first estimatedTTO utilities for 43 EQ-5D chronic health states and next these states wereembedded in health profiles. The chronic TTO utilities were then used topredict the responses to TTO questions with health profiles. We find that thepower QALY model clearly outperforms linear and exponential QALY models.Optimal power coefficient is 0.65. Our results suggest that TTO-based QALYcalculations may be biased. This bias can be avoided using a power QALY model.
Resumo:
Report for the scientific sojourn carried out at the University of California at Berkeley, from September to December 2007. Environmental niche modelling (ENM) techniques are powerful tools to predict species potential distributions. In the last ten years, a plethora of novel methodological approaches and modelling techniques have been developed. During three months, I stayed at the University of California, Berkeley, working under the supervision of Dr. David R. Vieites. The aim of our work was to quantify the error committed by these techniques, but also to test how an increase in the sample size affects the resultant predictions. Using MaxEnt software we generated distribution predictive maps, from different sample sizes, of the Eurasian quail (Coturnix coturnix) in the Iberian Peninsula. The quail is a generalist species from a climatic point of view, but an habitat specialist. The resultant distribution maps were compared with the real distribution of the species. This distribution was obtained from recent bird atlases from Spain and Portugal. Results show that ENM techniques can have important errors when predicting the species distribution of generalist species. Moreover, an increase of sample size is not necessary related with a better performance of the models. We conclude that a deep knowledge of the species’ biology and the variables affecting their distribution is crucial for an optimal modelling. The lack of this knowledge can induce to wrong conclusions.
Resumo:
Our purpose in this article is to define a network structure which is based on two egos instead of the egocentered (one ego) or the complete network (n egos). We describe the characteristics and properties for this kind of network which we call “nosduocentered network”, comparing it with complete and egocentered networks. The key point for this kind of network is that relations exist between the two main egos and all alters, but relations among others are not observed. After that, we use new social network measures adapted to the nosduocentered network, some of which are based on measures for complete networks such as degree, betweenness, closeness centrality or density, while some others are tailormade for nosduocentered networks. We specify three regression models to predict research performance of PhD students based on these social network measures for different networks such as advice, collaboration, emotional support and trust. Data used are from Slovenian PhD students and their s
Resumo:
The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics
Resumo:
We evaluate conditional predictive densities for U.S. output growth and inflationusing a number of commonly used forecasting models that rely on a large number ofmacroeconomic predictors. More specifically, we evaluate how well conditional predictive densities based on the commonly used normality assumption fit actual realizationsout-of-sample. Our focus on predictive densities acknowledges the possibility that, although some predictors can improve or deteriorate point forecasts, they might have theopposite effect on higher moments. We find that normality is rejected for most modelsin some dimension according to at least one of the tests we use. Interestingly, however,combinations of predictive densities appear to be correctly approximated by a normaldensity: the simple, equal average when predicting output growth and Bayesian modelaverage when predicting inflation.
Resumo:
This paper combines multivariate density forecasts of output growth, inflationand interest rates from a suite of models. An out-of-sample weighting scheme based onthe predictive likelihood as proposed by Eklund and Karlsson (2005) and Andersson andKarlsson (2007) is used to combine the models. Three classes of models are considered: aBayesian vector autoregression (BVAR), a factor-augmented vector autoregression (FAVAR)and a medium-scale dynamic stochastic general equilibrium (DSGE) model. Using Australiandata, we find that, at short forecast horizons, the Bayesian VAR model is assignedthe most weight, while at intermediate and longer horizons the factor model is preferred.The DSGE model is assigned little weight at all horizons, a result that can be attributedto the DSGE model producing density forecasts that are very wide when compared withthe actual distribution of observations. While a density forecast evaluation exercise revealslittle formal evidence that the optimally combined densities are superior to those from thebest-performing individual model, or a simple equal-weighting scheme, this may be a resultof the short sample available.
Resumo:
This paper analyses the predictive ability of quantitative precipitation forecasts (QPF) and the so-called "poor-man" rainfall probabilistic forecasts (RPF). With this aim, the full set of warnings issued by the Meteorological Service of Catalonia (SMC) for potentially-dangerous events due to severe precipitation has been analysed for the year 2008. For each of the 37 warnings, the QPFs obtained from the limited-area model MM5 have been verified against hourly precipitation data provided by the rain gauge network covering Catalonia (NE of Spain), managed by SMC. For a group of five selected case studies, a QPF comparison has been undertaken between the MM5 and COSMO-I7 limited-area models. Although MM5's predictive ability has been examined for these five cases by making use of satellite data, this paper only shows in detail the heavy precipitation event on the 9¿10 May 2008. Finally, the "poor-man" rainfall probabilistic forecasts (RPF) issued by SMC at regional scale have also been tested against hourly precipitation observations. Verification results show that for long events (>24 h) MM5 tends to overestimate total precipitation, whereas for short events (¿24 h) the model tends instead to underestimate precipitation. The analysis of the five case studies concludes that most of MM5's QPF errors are mainly triggered by very poor representation of some of its cloud microphysical species, particularly the cloud liquid water and, to a lesser degree, the water vapor. The models' performance comparison demonstrates that MM5 and COSMO-I7 are on the same level of QPF skill, at least for the intense-rainfall events dealt with in the five case studies, whilst the warnings based on RPF issued by SMC have proven fairly correct when tested against hourly observed precipitation for 6-h intervals and at a small region scale. Throughout this study, we have only dealt with (SMC-issued) warning episodes in order to analyse deterministic (MM5 and COSMO-I7) and probabilistic (SMC) rainfall forecasts; therefore we have not taken into account those episodes that might (or might not) have been missed by the official SMC warnings. Therefore, whenever we talk about "misses", it is always in relation to the deterministic LAMs' QPFs.
Resumo:
We propose new methods for evaluating predictive densities that focus on the models' actual predictive ability in finite samples. The tests offer a simple way of evaluatingthe correct specification of predictive densities, either parametric or non-parametric.The results indicate that our tests are well sized and have good power in detecting mis-specification in predictive densities. An empirical application to the Survey ofProfessional Forecasters and a baseline Dynamic Stochastic General Equilibrium modelshows the usefulness of our methodology.
Resumo:
This comment corrects the errors in the estimation process that appear in Martins (2001). The first error is in the parametric probit estimation, as the previously presented results do not maximize the log-likelihood function. In the global maximum more variables become significant. As for the semiparametric estimation method, the kernel function used in Martins (2001) can take on both positive and negative values, which implies that the participation probability estimates may be outside the interval [0,1]. We have solved the problem by applying local smoothing in the kernel estimation, as suggested by Klein and Spady (1993).