6 resultados para PPAR
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Dietary fatty acid supply can affect stress response in fish during early development. Although knowledge on the mechanisms involved in fatty acid regulation of stress tolerance is scarce, it has often been hypothesised that eicosanoid profiles can influence cortisol production. Genomic cortisol actions are mediated by cytosolic receptors which may respond to cellular fatty acid signalling. An experiment was designed to test the effects of feeding gilthead sea-bream larvae with four microdiets, containing graded arachidonic acid (ARA) levels (0·4, 0·8, 1·5 and 3·0 %), on the expression of genes involved in stress response (steroidogenic acute regulatory protein, glucocorticoid receptor and phosphoenolpyruvate carboxykinase), lipid and, particularly, eicosanoid metabolism (hormone-sensitive lipase, PPARα, phospholipase A2, cyclo-oxygenase-2 and 5-lipoxygenase), as determined by real-time quantitative PCR. Fish fatty acid phenotypes reflected dietary fatty acid profiles. Growth performance, survival after acute stress and similar whole-body basal cortisol levels suggested that sea-bream larvae could tolerate a wide range of dietary ARA levels. Transcription of all genes analysed was significantly reduced at dietary ARA levels above 0·4 %. Nonetheless, despite practical suppression of phospholipase A2 transcription, higher leukotriene B4 levels were detected in larvae fed 3·0 % ARA, whereas a similar trend was observed regarding PGE2 production. The present study demonstrates that adaptation to a wide range of dietary ARA levels in gilthead sea-bream larvae involves the modulation of the expression of genes related to eicosanoid synthesis, lipid metabolism and stress response. The roles of ARA, other polyunsaturates and eicosanoids as signals in this process are discussed.
Resumo:
Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters.
Resumo:
Muscle-type carnitine palmitoyltransferase 1 (CPT1β) is considered to be the gene that controls fatty acid mitochondrial β-oxidation. A functional peroxisome proliferator-activated receptor (PPAR) responsive element (PPRE) and a myocite-specific (MEF2) site that binds MEF2A and MEF2C in the promoter of this gene had been previously identified. We investigated the roles of the PPRE and the MEF2 binding sites and the potential interaction between PPARα and MEF2C regulating the CPT1β gene promoter. Mutation analysis indicated that the MEF2 site contributed to the activation of the CPT1β promoter by PPAR in C2C12 cells. The reporter construct containing the PPRE and the MEF2C site was synergistically activated by co-expression of PPAR, retinoid X receptor (RXR) and MEF2C in non-muscle cells. Moreover, protein-binding assays demonstrated that MEF2C and PPAR specifically bound to one another in vitro. Also for the synergistic activation of the CPT1β gene promoter by MEF2C and PPARα-RXRα, a precise arrangement of its binding sites was essential.
Resumo:
Background: Chronic Obstructive Pulmonary Disease (COPD) is characterized by an enhanced inflammatory response to smoking that persists despite quitting. The resolution of inflammation (catabasis) is a complex and highly regulated process where tissue resident macrophages play a key role since they phagocytose apoptotic cells (efferocytosis), preventing their secondary necrosis and the spill-over of their pro-inflammatory cytoplasmic content, and release pro-resolution and tissue repair molecules, such as TGFβ, VEGF and HGF. Because inflammation does not resolve in COPD, we hypothesized that catabasis may be abnormal in these patients. Methods: To explore this hypothesis, we studied lung tissue samples obtained at surgery from 21 COPD patients,22 smokers with normal spirometry and 13 non-smokers controls. In these samples we used: (1)immunohistochemistry to assess the expression of CD44, CD36, VEGF and TGFβ in lung macrophages; (2) real time PCR to determine HGF, PPARγ, TGFβ, VEGF and MMP-9 gene expression; and, (3) ELISA to quantify lipoxin A4, a lipid mediator of catabasis. Results: We found that current and former smokers with COPD showed: (1) more inflammation (higher MMP-9 expression); (2) reduced macrophage surface expression of CD44, a key efferocytosis receptor; and, (3) similar levels of TGFβ, VEGF, HGF, PPARγ, and lipoxin A4 than smokers with normal spirometry, despite the presence of inflammation and disease. Conclusions: These results identify several potential abnormalities of catabasis in patients with COPD.
Resumo:
Pyruvate dehydrogenase kinase 4 (PDK4) inhibition by nuclear factor-κB (NF-κB) is related to a shift towards increased glycolysis during cardiac pathological processes such as cardiac hypertrophy and heart failure. The transcription factors estrogen-related receptor-α (ERRα) and peroxisome proliferator-activated receptor (PPAR) regulate PDK4 expression through the potent transcriptional coactivator PPARγ coactivator-1α (PGC-1α). NF-κB activation in AC16 cardiac cells inhibit ERRα and PPARβ/δ transcriptional activity, resulting in reduced PGC-1α and PDK4 expression, and an enhanced glucose oxidation rate. However, addition of the NF-κB inhibitor parthenolide to these cells prevents the downregulation of PDK4 expression but not ERRα and PPARβ/δ DNA binding activity, thus suggesting that additional transcription factors are regulating PDK4. Interestingly, a recent study has demonstrated that the transcription factor E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Given that NF-κB may antagonize the transcriptional activity of E2F1 in cardiac myocytes, we sought to study whether inflammatory processes driven by NF-κB can downregulate PDK4 expression in human cardiac AC16 cells through E2F1 inhibition. Protein coimmunoprecipitation indicated that PDK4 downregulation entailed enhanced physical interaction between the p65 subunit of NF-κB and E2F1. Chromatin immunoprecipitation analyses demonstrated that p65 translocation into the nucleus prevented the recruitment of E2F1 to the PDK4 promoter and its subsequent E2F1-dependent gene transcription. Interestingly, the NF-κB inhibitor parthenolide prevented the inhibition of E2F1, while E2F1 overexpression reduced interleukin expression in stimulated cardiac cells. Based on these findings, we propose that NF-κB acts as a molecular switch that regulates E2F1-dependent PDK4 gene transcription.
Resumo:
Uncoupling protein-3 (UCP3) is a member of the mitochondrial carrier family expressed preferentially in skeletal muscle and heart. It appears to be involved in metabolic handling of fatty acids in a way that minimizes excessive production of reactive oxygen species. Fatty acids are powerful regulators of UCP3 gene transcription. We have found that the role of peroxisome proliferator-activated receptor-α (PPARα) on the control of UCP3 gene expression depends on the tissue and developmental stage. In adults, UCP3 mRNA expression is unaltered in skeletal muscle from PPARα-null mice both in basal conditions and under the stimulus of starvation. In contrast, UCP3 mRNA is down-regulated in adult heart both in fed and fasted PPARα-null mice. This occurs despite the increased levels of free fatty acids caused by fasting in PPARα-null mice. In neonates, PPARα-null mice show impaired UCP3 mRNA expression in skeletal muscle in response to milk intake, and this is not a result of reduced free fatty acid levels. The murine UCP3 promoter is activated by fatty acids through either PPARα or PPARδ but not by PPARγ or retinoid X receptor alone. PPARδ-dependent activation could be a potential compensatory mechanism to ensure appropriate expression of UCP3 gene in adult skeletal muscle in the absence of PPARα. However, among transcripts from other PPARα and PPARδ target genes, only those acutely induced by milk intake in wild-type neonates were altered in muscle or heart from PPARα-null neonates. Thus, PPARα-dependent regulation is required for appropriate gene regulation of UCP3 as part of the subset of fatty-acid-responsive genes in neonatal muscle and heart.