12 resultados para Overtures (Violin with string orchestra)
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Using the blackfold approach, we study new classes of higher-dimensional rotating black holes with electric charges and string dipoles, in theories of gravity coupled to a 2-form or 3-form field strength and to a dilaton with arbitrary coupling. The method allows to describe not only black holes with large angular momenta, but also other regimes that include charged black holes near extremality with slow rotation. We construct explicit examples of electric rotating black holes of dilatonic and non-dilatonic Einstein-Maxwell theory, with horizons of spherical and non-spherical topology. We also find new families of solutions with string dipoles, including a new class of prolate black rings. Whenever there are exact solutions that we can compare to, their properties in the appropriate regime are reproduced precisely by our solutions. The analysis of blackfolds with string charges requires the formulation of the dynamics of anisotropic fluids with conserved string-number currents, which is new, and is carried out in detail for perfect fluids. Finally, our results indicate new instabilities of near-extremal, slowly rotating charged black holes, and motivate conjectures about topological constraints on dipole hair.
Resumo:
We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α′ expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.
Resumo:
We present a framework for modeling right-hand gestures in bowed-string instrument playing, applied to violin. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing gesture parameter cues. We model the temporal contour of bow transversal velocity, bow pressing force, and bow-bridge distance as sequences of short segments, in particular B´ezier cubic curve segments. Considering different articulations, dynamics, andcontexts, a number of note classes is defined. Gesture parameter contours of a performance database are analyzed at note-level by following a predefined grammar that dictatescharacteristics of curve segment sequences for each of the classes into consideration. Based on dynamic programming, gesture parameter contour analysis provides an optimal curve parameter vector for each note. The informationpresent in such parameter vector is enough for reconstructing original gesture parameter contours with significant fidelity. From the resulting representation vectors, weconstruct a statistical model based on Gaussian mixtures, suitable for both analysis and synthesis of bowing gesture parameter contours. We show the potential of the modelby synthesizing bowing gesture parameter contours from an annotated input score. Finally, we point out promising applicationsand developments.
Resumo:
We show that the symmetries of effective D-string actions in constant dilaton backgrounds are directly related to homothetic motions of the background metric. In the presence of such motions, there are infinitely many nonlinearly realized rigid symmetries forming a loop (or looplike) algebra. Near horizon (antideSitter) D3 and D1+D5 backgrounds are discussed in detail and shown to provide 2D interacting field theories with infinite conformal symmetry.
Resumo:
New results on the theory of constrained systems are applied to characterize the generators of Noethers symmetry transformations. As a byproduct, an algorithm to construct gauge transformations in Hamiltonian formalism is derived. This is illustrated with two relevant examples.
Resumo:
An analysis of cosmic string breaking with the formation of black holes attached to the ends reveals a remarkable feature: the black holes can be correlated or uncorrelated. We find that, as a consequence, the number-of-states enhancement factor in the action governing the formation of uncorrelated black holes is twice the one for a correlated pair. We argue that when an uncorrelated pair forms at the ends of the string, the physics involved is more analogous to thermal nucleation than to particle-antiparticle creation. Also, we analyze the process of intercommuting strings induced by black hole annihilation and merging. Finally, we discuss the consequences for grand unified strings. The process whereby uncorrelated black holes are formed yields a rate which significantly improves over those previously considered, but still not enough to modify string cosmology. 1995 The American Physical Society.
Resumo:
region to the other. We also present a C-type solution that describes neutral bubbles in uniform acceleration, and we use it to construct an instanton that mediates the breaking of a cosmic string by forming bubbles at its ends. The rate for this process is also calculated. Finally, we argue that a similar solution can be constructed for magnetic bubbles, and that it can be used to describe a semiclassical instability of the two-timing vacuum against production of massless monopole pairs.
Resumo:
The scalar sector of the effective low-energy six-dimensional Kaluza-Klein theory is seen to represent an anisotropic fluid composed of two perfect fluids if the extra space metric has a Euclidean signature, or a perfect fluid of geometric strings if it has an indefinite signature. The Einstein field equations with such fluids can be explicitly integrated when the four-dimensional space-time has two commuting Killing vectors.
Resumo:
Excitation-continuous music instrument control patterns are often not explicitly represented in current sound synthesis techniques when applied to automatic performance. Both physical model-based and sample-based synthesis paradigmswould benefit from a flexible and accurate instrument control model, enabling the improvement of naturalness and realism. Wepresent a framework for modeling bowing control parameters inviolin performance. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing control parameter signals.We model the temporal contour of bow velocity, bow pressing force, and bow-bridge distance as sequences of short Bézier cubic curve segments. Considering different articulations, dynamics, and performance contexts, a number of note classes are defined. Contours of bowing parameters in a performance database are analyzed at note-level by following a predefined grammar that dictates characteristics of curve segment sequences for each of the classes in consideration. As a result, contour analysis of bowing parameters of each note yields an optimal representation vector that is sufficient for reconstructing original contours with significant fidelity. From the resulting representation vectors, we construct a statistical model based on Gaussian mixtures suitable for both the analysis and synthesis of bowing parameter contours. By using the estimated models, synthetic contours can be generated through a bow planning algorithm able to reproduce possible constraints caused by the finite length of the bow. Rendered contours are successfully used in two preliminary synthesis frameworks: digital waveguide-based bowed stringphysical modeling and sample-based spectral-domain synthesis.
Resumo:
We demonstrate how duality invariance of the low energy expansion of the four-supergraviton amplitude in type II string theory determines the precise coefficients of multiloop logarithmic ultraviolet divergences of maximal supergravity in various dimensions. This is illustrated by the explicit moduli-dependence of terms of the form ¿2k R4, with k ¿ 3, in the effective action. Furthermore, we show that in the supergravity limit the perturbative contributions are swamped by an accumulation of non-perturbative effects of zero-action instantons.
Resumo:
We study new supergravity solutions related to large-N c N=1 supersymmetric gauge field theories with a large number N f of massive flavors. We use a recently proposed framework based on configurations with N c color D5 branes and a distribution of N f flavor D5 branes, governed by a function N f S(r). Although the system admits many solutions, under plausible physical assumptions the relevant solution is uniquely determined for each value of x ≡ N f /N c . In the IR region, the solution smoothly approaches the deformed Maldacena-Núñez solution. In the UV region it approaches a linear dilaton solution. For x < 2 the gauge coupling β g function computed holographically is negative definite, in the UV approaching the NSVZ β function with anomalous dimension γ 0 = −1/2 (approaching − 3/(32π 2)(2N c − N f )g 3)), and with β g → −∞ in the IR. For x = 2, β g has a UV fixed point at strong coupling, suggesting the existence of an IR fixed point at a lower value of the coupling. We argue that the solutions with x > 2 describe a"Seiberg dual" picture where N f − 2N c flips sign.
Resumo:
This project addresses methodological and technological challenges in the development of multi-modal data acquisition and analysis methods for the representation of instrumental playing technique in music performance through auditory-motor patterning models. The case study is violin playing: a multi-modal database of violin performances has been constructed by recording different musicians while playing short exercises on different violins. The exercise set and recording protocol have been designed to sample the space defined by dynamics (from piano to forte) and tone (from sul tasto to sul ponticello), for each bow stroke type being played on each of the four strings (three different pitches per string) at two different tempi. The data, containing audio, video, and motion capture streams, has been processed and segmented to facilitate upcoming analyses. From the acquired motion data, the positions of the instrument string ends and the bow hair ribbon ends are tracked and processed to obtain a number of bowing descriptors suited for a detailed description and analysis of the bow motion patterns taking place during performance. Likewise, a number of sound perceptual attributes are computed from the audio streams. Besides the methodology and the implementation of a number of data acquisition tools, this project introduces preliminary results from analyzing bowing technique on a multi-modal violin performance database that is unique in its class. A further contribution of this project is the data itself, which will be made available to the scientific community through the repovizz platform.