7 resultados para Osmotic Downshock
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Estudi elaborat a partir dâuna estada a la School of Life Sciences de la University of Dundee, Gran Bretanya, entre gener i març del 2007.L'estrès osmòtic causa rà pidament l'activació de la quinasa WNK1, que fosforila i activa a continuació les quinases SPAK i OSR1, que alhora regulen canals i transportadors dâions preexistents a la membrana celâ¢lular. El factor de transcripció NFAT5 és el principal regulador de la resposta celâ¢lular transcripcional secundà ria a hipertonicitat i sâha descrit que les quinases p38, Fyn, PKA, ERK/MEK i ATM estan involucrades en la seva regulació post-traduccional. No obstant, com que la funció dâaquestes quinases no explica totalment els mecanismes d'activació de NFAT5, sâha estudiat si lâactivitat transcripcional de NFAT5 pot estar regulada per WNK1, SPAK o OSR1. Aixà doncs, es va observar que lâactivitat dâun reporter dependent de NFAT5 no es veu afectada per la presència de cap de les quinases anteriors, en la seva forma wild-type o dominant negatiu. Dâaltra banda, es va estudiar quin domini de WNK1 és necessari per a que pugui respondre a hipertonicitat i quines quinases poden estar involucrades en la fosforilació de la serina 382 de WNK1. En conclusió, les dades obtingudes apunten que lâactivació de WNK1 en resposta a estrès osmòtic requereix la seva fosforilació en la serina 382 per quinases upstream com PAK2 o RSK i que també és necessari un dels seus dominis coiled-coil, almenys els aminoà cids 558 i 561. Aquests processos, però, semblen ser independents de lâactivació de NFAT5 en resposta a hipertonicitat. ââ
Resumo:
La variabilitat de l’estequiometria elemental dels organismes a causa de l’ontogènia i dels canvis en les condicions ambientals està relacionada amb la variabilitat metabolòmica. Això és degut a que els elements operen majoritàriament com a parts de compostos moleculars. Així doncs, la hipòtesi realitzada per Rivas-Ubach et al., (2012), la qual postula que els estudis estequiomètrics i metabolòmics d’un conjunt d’espècies vegetals exposades a condicions ambientals diferents han de mostrar la flexibilitat que posseeix un organisme a l’hora de modular la seva estequiometria i el seu metaboloma per tal de mantenir la forma òptima sota condicions variants, esdevé la base que sustenta l’experiment EVENT II. A partir de l’estudi de les relacions estequiomètriques, -principalment C:N:P- i del metabolisme d’Alopecurus pratensis i Holcus lanatus en situacions simulades de sequera, s’han obtingut resultats que evidencien una clara diferenciació a nivell d’espècie, de part de la planta i de tractament. El metabolisme i l’estequiometria diferencial que presenten ambdues gramínies dóna suport a la hipòtesi del nínxol biogeoquímic. A nivell de parts de la planta, s’observa un clar augment de la relació C:nutrients a la part aèria, mentre que a les arrels, aquesta relació disminueix. La part aèria doncs, necessita més C per invertir en funcions estructurals, mentre que l’elevada concentració de nutrients i metabòlits a les arrels donen indicis de la presència de mecanismes osmòtics per a facilitar l’entrada d’aigua, i de creixement, per a la recerca de noves fonts d’aigua, observant-se una disminució de la relació part aèria:arrels. Un altre factor que demostra aquest creixement radicular són les baixes relacions N:P trobades, fet que dóna suport a la hipòtesi de la velocitat de creixement.
Resumo:
Viruses are known to tolerate wide ranges of pH and salt conditions and to withstand internal pressures as high as 100 atmospheres. In this paper we investigate the mechanical properties of viral capsids, calling explicit attention to the inhomogeneity of the shells that is inherent to their discrete and polyhedral nature. We calculate the distribution of stress in these capsids and analyze their response to isotropic internal pressure (arising, for instance, from genome confinement and/or osmotic activity). We compare our results with appropriate generalizations of classical (i.e., continuum) elasticity theory. We also examine competing mechanisms for viral shell failure, e.g., in-plane crack formation vs radial bursting. The biological consequences of the special stabilities and stress distributions of viral capsids are also discussed.
Resumo:
Glutaredoxins are members of a superfamily of thiol disulfide oxidoreductases involved in maintaining the redox state of target proteins. In Saccharomyces cerevisiae, two glutaredoxins (Grx1 and Grx2) containing a cysteine pair at the active site had been characterized as protecting yeast cells against oxidative damage. In this work, another subfamily of yeast glutaredoxins (Grx3, Grx4, and Grx5) that differs from the first in containing a single cysteine residue at the putative active site is described. This trait is also characteristic for a number of glutaredoxins from bacteria to humans, with which the Grx3/4/5 group has extensive homology over two regions. Mutants lacking Grx5 are partially deficient in growth in rich and minimal media and also highly sensitive to oxidative damage caused by menadione and hydrogen peroxide. A significant increase in total protein carbonyl content is constitutively observed in grx5cells, and a number of specific proteins, including transketolase, appear to be highly oxidized in this mutant. The synthetic lethality of the grx5 and grx2 mutations on one hand and ofgrx5 with the grx3 grx4 combination on the other points to a complex functional relationship among yeast glutaredoxins, with Grx5 playing a specially important role in protection against oxidative stress both during ordinary growth conditions and after externally induced damage. Grx5-deficient mutants are also sensitive to osmotic stress, which indicates a relationship between the two types of stress in yeast cells.
Resumo:
Background While growing in natural environments yeasts can be affected by osmotic stress provoked by high glucose concentrations. The response to this adverse condition requires the HOG pathway and involves transcriptional and posttranscriptional mechanisms initiated by the phosphorylation of this protein, its translocation to the nucleus and activation of transcription factors. One of the genes induced to respond to this injury is YHR087W. It encodes for a protein structurally similar to the N-terminal region of human SBDS whose expression is also induced under other forms of stress and whose deletion determines growth defects at high glucose concentrations. Results In this work we show that YHR087W expression is regulated by several transcription factors depending on the particular stress condition, and Hot1p is particularly relevant for the induction at high glucose concentrations. In this situation, Hot1p, together to Sko1p, binds to YHR087W promoter in a Hog1p-dependent manner. Several evidences obtained indicate Yhr087wp"s role in translation. Firstly, and according to TAP purification experiments, it interacts with proteins involved in translation initiation. Besides, its deletion mutant shows growth defects in the presence of translation inhibitors and displays a slightly slower translation recovery after applying high glucose stress than the wild type strain. Analyses of the association of mRNAs to polysome fractions reveals a lower translation in the mutant strain of the mRNAs corresponding to genes GPD1, HSP78 and HSP104. Conclusions The data demonstrates that expression of Yhr087wp under high glucose concentration is controlled by Hot1p and Sko1p transcription factors, which bind to its promoter. Yhr087wp has a role in translation, maybe in the control of the synthesis of several stress response proteins, which could explain the lower levels of some of these proteins found in previous proteomic analyses and the growth defects of the deletion strain. Keywords: Saccharomyces cerevisiae; High glucose osmotic stress; Gene YHR087W; Gene expression; Translation; Hot1p; Hog1p; Polysomes
Resumo:
In his version of the theory of multicomponent systems, Friedman used the analogy which exists between the virial expansion for the osmotic pressure obtained from the McMillan-Mayer (MM) theory of solutions in the grand canonical ensemble and the virial expansion for the pressure of a real gas. For the calculation of the thermodynamic properties of the solution, Friedman proposed a definition for the"excess free energy" that is a reminder of the ancient idea for the"osmotic work". However, the precise meaning to be attached to his free energy is, within other reasons, not well defined because in osmotic equilibrium the solution is not a closed system and for a given process the total amount of solvent in the solution varies. In this paper, an analysis based on thermodynamics is presented in order to obtain the exact and precise definition for Friedman"s excess free energy and its use in the comparison with the experimental data.
Resumo:
Background: Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle tocause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective: This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods: We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP14 were assayed on the activated mast cells. Betahexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results: Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogenactivated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by betahexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase,and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions: Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition.